Publications

Results 376–400 of 419
Skip to search filters

Nanocomposite plasmonic fluorescence emitters with core/shell configurations

Proposed for publication in the Journal of Optical Society of America B.

Miao, Xiaoyu M.; Brener, Igal B.

This paper is focused on the optical properties of nanocomposite plasmonic emitters with core/shell configurations, where a fluorescence emitter is located inside a metal nanoshell. Systematic theoretical investigations are presented for the influence of material type, core radius, shell thickness, and excitation wavelength on the internal optical intensity, radiative quantum yield, and fluorescence enhancement of the nanocomposite emitter. It is our conclusion that: (i) an optimal ratio between the core radius and shell thickness is required to maximize the absorption rate of fluorescence emitters, and (ii) a large core radius is desired to minimize the non-radiative damping and avoid significant quantum yield degradation of light emitters. Several experimental approaches to synthesize these nanocomposite emitters are also discussed. Furthermore, our theoretical results are successfully used to explain several reported experimental observations and should prove useful for designing ultra-bright core/shell nanocomposite emitters.

More Details

Fabrication techniques for 3D metamaterials in the mid-infrared

Wendt, J.R.; Burckel, David B.; Ten Eyck, Gregory A.; Ellis, A.R.; Brener, Igal B.; Sinclair, Michael B.

The authors have developed two versions of a flexible fabrication technique known as membrane projection lithography that can produce nearly arbitrary patterns in '212 D' and fully three-dimensional (3D) structures. The authors have applied this new technique to the fabrication of split ring resonator-based metamaterials in the midinfrared. The technique utilizes electron beam lithography for resolution, pattern design flexibility, and alignment. The resulting structures are nearly three orders of magnitude smaller than equivalent microwave structures that were first used to demonstrate a negative index material. The fully 3D structures are highly isotropic and exhibit both electrically and magnetically excited resonances for incident transverse electromagnetic waves.

More Details

Fabrication of 3-D cubic unit cells with measured IR resonances

Sinclair, Michael B.; Brener, Igal B.; Ten Eyck, Gregory A.; Ellis, A.R.; Ginn, James C.; Wendt, J.R.

3-D cubic unit cell arrays containing split ring resonators were fabricated and characterized. The unit cells are {approx}3 orders-of-magnitude smaller than microwave SRR-based metamaterials and exhibit both electrically and magnetically excited resonances for normally incident TEM waves in addition to showing improved isotropic response.

More Details

Amplitude and phase-resolved measurements of optical metamaterials in the mid-infrared by phase matched electro-optic sampling

Brener, Igal B.; Passmore, Brandon S.; Ten Eyck, Gregory A.; Wendt, J.R.; Sinclair, Michael B.

We describe a time-domain spectroscopy system in the thermal infrared used for complete transmission and reflection characterization of metamaterials in amplitude and phase. The system uses a triple-output near-infrared ultrafast fiber laser, phase-locked difference frequency generation and phase-matched electro-optic sampling. We will present measurements of several metamaterials designs.

More Details

Resonant coupling to a dipole absorber inside a metamaterial: Anticrossing of the negative index response

Journal of Vacuum Science and Technology B

Smolev, Svyatoslav; Ku, Zahyun; Brueck, S.R.J.; Brener, Igal B.; Sinclair, Michael B.; Ten Eyck, Gregory A.; Langston, William L.; Basilio, Lorena I.

The authors experimentally demonstrate a resonant hybridization between the magnetic dipole structural resonance in the permeability of a fishnet metamaterial and an electric dipole material resonance in the permittivity of the dielectric spacer layer. The hybrid resonances in the permeability and the negative index response exhibit an anticrossing behavior. A simple analytic model and numerical simulations using a rigorous coupled-wave analysis are in excellent qualitative agreement with the experiment. © 2010 American Vacuum Society.

More Details
Results 376–400 of 419
Results 376–400 of 419