Measurements of Magneto-Rayleigh-Taylor instability growth in initially solid liners on the Z facility
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proceedings of SPIE - The International Society for Optical Engineering
We discuss upgrades and development currently underway at the Z-Backlighter facility. Among them are a new optical parametric chirped pulse amplifier (OPCPA) front end, 94 cm × 42 cm multi layer dielectric (MLD) gratings, dichroic laser beam transport studies, 25 keV x-ray source development, and a major target area expansion. These upgrades will pave the way for short/long pulse, multi-frame, multi-color x-ray backlighting at the Z-Accelerator. © 2011 SPIE.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physics of Plasmas
Abstract not provided.
Proceedings of SPIE - The International Society for Optical Engineering
Sandia's Large Optics Coating Operation has extensive results of laser induced damage threshold (LIDT) testing of its anti-reflection (AR) and high reflection coatings on substrates pitch polished using ceria and washed in a process that includes an alumina wash step. The purpose of the alumina wash step is to remove residual polishing compound to minimize its role in laser damage. These LIDT tests are for multi longitudinal mode, ns class pulses at 1064 nm and 532 nm (NIF-MEL protocol) and mode locked, sub-ps class pulses at 1054 nm (Sandia measurements), and show reasonably high and adequate laser damage resistance for coatings in the beam trains of Sandia's Z-Backlighter terawatt and petawatt lasers. An AR coating in addition to coatings of our previous reports confirms this with LIDTs of 33.0 J/cm2 for 3.5 ns pulses and 1.8 J/cm2 for 350 fs pulses. In this paper, we investigate both ceria and zirconia in doublesided polishing (common for large flat Z-Backlighter laser optics) as they affect LIDTs of an AR coating on fused silica substrates washed with or without the alumina wash step. For these AR coated, double-sided polished surfaces, ceria polishing in general affords better resistance to laser damage than zirconia polishing and laser damage is less likely with the alumina wash step than without it. This is supported by specific results of laser damage tests with 3.5 ns, multi longitudinal mode, single shot pulses at 1064 nm and 532 nm, with 7.0 ns, single and multi longitudinal mode, single and multi shot pulses at 532 nm, and with 350 fs, mode-locked, single shot pulses at 1054 nm. © 2010 Copyright SPIE - The International Society for Optical Engineering.
IEEE Transactions in Plasma Science (Special issue on %22Images in Plasma Science%22)
Abstract not provided.
IEEE Transactions in Plasma Science (Special issue on %22Images in Plasma Science%22)
Abstract not provided.
Abstract not provided.
Abstract not provided.
The Journal of Applied Optics
Abstract not provided.
Abstract not provided.
The magneto-Rayleigh-Taylor (MRT) instability is the most important instability for determining whether a cylindrical liner can be compressed to its axis in a relatively intact form, a requirement for achieving the high pressures needed for inertial confinement fusion (ICF) and other high energy-density physics applications. While there are many published RT studies, there are a handful of well-characterized MRT experiments at time scales >1 {micro}s and none for 100 ns z-pinch implosions. Experiments used solid Al liners with outer radii of 3.16 mm and thicknesses of 292 {micro}m, dimensions similar to magnetically-driven ICF target designs [1]. In most tests the MRT instability was seeded with sinusoidal perturbations ({lambda} = 200, 400 {micro}m, peak-to-valley amplitudes of 10, 20 {micro}m, respectively), wavelengths similar to those predicted to dominate near stagnation. Radiographs show the evolution of the MRT instability and the effects of current-induced ablation of mass from the liner surface. Additional Al liner tests used 25-200 {micro}m wavelengths and flat surfaces. Codes being used to design magnetized liner ICF loads [1] match the features seen except at the smallest scales (<50 {micro}m). Recent experiments used Be liners to enable penetrating radiography using the same 6.151 keV diagnostics and provide an in-flight measurement of the liner density profile.
Abstract not provided.
Abstract not provided.
We report reflectivity, design and laser damage comparisons of our AR coatings for use at 1054 nm and/or 527 nm, and at angles of incidence between 0 and 45 degrees.
Abstract not provided.
Proceedings of SPIE - The International Society for Optical Engineering
Sandia's Large Optics Coating Operation provides laser damage resistant optical coatings on meter-class optics required for the ZBacklighter Terawatt and Petawatt lasers. Deposition is by electron beam evaporation in a 2.3 m x 2.3 m x 1.8 m temperature controlled vacuum chamber. Ion assisted deposition (IAD) is optional. Coating types range from antireflection (AR) to high reflection (HR) at S and P polarizations for angle of incidence (AOI) from 0° to 47°. This paper reports progress in meeting challenges in design and deposition of these high laser induced damage threshold (LIDT) coatings. Numerous LIDT tests (NIF-MEL protocol, 3.5 ns laser pulses at 1064 nm and 532 nm) on the coatings confirm that they are robust against laser damage. Typical LIDTs are: at 1064 nm, 45° AOI, Ppol, 79 J/cm2 (IAD 32 layer HR coating) and 73 J/cm2 (non-IAD 32 layer HR coating); at 1064 nm, 32° AOI, 82 J/cm2 (Ppol) and 55 J/cm2 (Spol ) (non-IAD 32 layer HR coating); and at 532 nm, Ppol, 16 J/cm2 (25° AOI) and 19 J/cm2 (45° AOI) (IAD 50 layer HR coating). The demands of meeting challenging spectral, AOI and LIDT performances are highlighted by an HR coating required to provide R > 99.6% reflectivity in Ppol and Spol over AOIs from 24° to 47° within ∼ 1% bandwidth at both 527 nm and 1054 nm. Another issue is coating surface roughness. For IAD of HR coatings, elevating the chamber temperature to ∼ 120°C and turning the ion beam off during the pause in deposition between layers reduce the coating surface roughness compared to runs at lower temperatures with the ion beam on continuously. Atomic force microscopy and optical profilometry confirm the reduced surface roughness for these IAD coatings, and tests show that their LIDTs remain high. © 2009 Copyright SPIE - The International Society for Optical Engineering.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physical Review E
Abstract not provided.