Publications

Results 1–50 of 69
Skip to search filters

Summary of Peace Engineering Biome Kickoff Workshop

Armenta, Mika; Hermina, Wahid L.; Hayden, Nancy K.; Passell, Howard D.; Garcia, Pablo G.; Jordan, Ramiro J.; Koechner, Donna K.; Amadei, Bernard A.

There are urgent calls to action by the NAE, the Nobel Prize Summit, the UN, and global scientists to address and solve, in this decade (2020 – 2030), crucial and widely recognized global challenges to peace and security before they become more complex and more environmentally, financially, and socially costly; before we reach the point of no return.

More Details

Sandia National Laboratories Strategic Context Workshop Series 2017: National Security Futures for Strategic Thinking

Keller, Elizabeth J.; Roll, Elizabeth R.; Aamir, Munaf S.; Bull, Diana L.; Deland, Sharon M.; Haddal, Chad H.; Passell, Howard D.; Foley, John T.; Harwell, Amber S.; Otis, Monique O.; Backus, George A.; Jones, Wendell J.; Bawden, Michael G.; Craft, Richard L.; Kistin, David J.; Martin, Jeffrey B.; McNicol, Bradley R.; Vannoni, Michael G.; Trost, Lawrence C.; Tsao, Jeffrey Y.; Weaver, Karla W.

In August 2017, Sandia convened five workshops to explore the future of advanced technologies and global peace and security through the lenses of deterrence, information, innovation, nonproliferation, and population and Earth systems.

More Details

Institutional Transformation Version 2.5 Modeling and Planning

Villa, Daniel V.; Mizner, Jack H.; Passell, Howard D.; Gallegos, Gerald R.; Peplinski, William J.; Vetter, Douglas W.; Evans, Christopher A.; Malczynski, Leonard A.; Addison, Marlin A.; Schaffer, Matthew A.; Higgins, Matthew B.

Reducing the resource consumption and emissions of large institutions is an important step toward a sustainable future. Sandia National Laboratories' (SNL) Institutional Transformation (IX) project vision is to provide tools that enable planners to make well-informed decisions concerning sustainability, resource conservation, and emissions reduction across multiple sectors. The building sector has been the primary focus so far because it is the largest consumer of resources for SNL. The IX building module allows users to define the evolution of many buildings over time. The module has been created so that it can be generally applied to any set of DOE-2 ( http://doe2.com ) building models that have been altered to include parameters and expressions required by energy conservation measures (ECM). Once building models have been appropriately prepared, they are checked into a Microsoft Access (r) database. Each building can be represented by many models. This enables the capability to keep a continuous record of models in the past, which are replaced with different models as changes occur to the building. In addition to this, the building module has the capability to apply climate scenarios through applying different weather files to each simulation year. Once the database has been configured, a user interface in Microsoft Excel (r) is used to create scenarios with one or more ECMs. The capability to include central utility buildings (CUBs) that service more than one building with chilled water has been developed. A utility has been created that joins multiple building models into a single model. After using the utility, several manual steps are required to complete the process. Once this CUB model has been created, the individual contributions of each building are still tracked through meters. Currently, 120 building models from SNL's New Mexico and California campuses have been created. This includes all buildings at SNL greater than 10,000 sq. ft., representing 80% of the energy consumption at SNL. SNL has been able to leverage this model to estimate energy savings potential of many competing ECMs. The results helped high level decision makers to create energy reduction goals for SNL. These resources also have multiple applications for use of the models as individual buildings. In addition to the building module, a solar module built in Powersim Studio (r) allows planners to evaluate the potential photovoltaic (PV) energy generation potential for flat plate PV, concentrating solar PV, and concentration solar thermal technologies at multiple sites across SNL's New Mexico campus. Development of the IX modeling framework was a unique collaborative effort among planners and engineers in SNL's facilities division; scientists and computer modelers in SNL's research and development division; faculty from Arizona State University; and energy modelers from Bridger and Paxton Consulting Engineers Incorporated.

More Details

Nuclear Security Futures Scenarios

Keller, Elizabeth J.; Warren, Drake E.; Hayden, Nancy K.; Passell, Howard D.; Malczynski, Leonard A.; Backus, George A.

This report provides an overview of the scenarios used in strategic futures workshops conducted at Sandia on September 21 and 29, 2016. The workshops, designed and facilitated by analysts in Center 100, used scenarios to enable thought leaders to think collectively about the changing aspects of global nuclear security and the potential implications for the US Government and Sandia National Laboratories.

More Details

Applying the World Water and Agriculture Model to Filling Scenarios for the Grand Ethiopian Renaissance Dam

Villa, Daniel V.; Tidwell, Vincent C.; Passell, Howard D.; Roberts, Barry L.

The World Water and Agriculture Model has been used to simulate water, hydropower, and food sector effects in Egypt, Sudan, and Ethiopia during the filling of the Grand Ethiopian Renaissance Dam reservoir. This unique capability allows tradeoffs to be made between filling policies for the Grand Ethiopian Renaissance Dam reservoir. This Nile River Basin study is presented to illustrate the capacity to use the World Water and Agriculture Model to simulate regional food security issues while keeping a global perspective. The study uses runoff data from the Intergovernmental Panel for Climate Change Coupled Model Inter-comparison Project Phase 5 and information from the literature in order to establish a reasonable set of hydrological initial conditions. Gross Domestic Product and population growth are modelled exogenously based on a composite projection of United Nations and World Bank data. The effects of the Grand Ethiopian Renaissance Dam under various percentages of water withheld are presented.

More Details

Behavior Influence Assessment of Impacts of the Grand Ethiopian Renaissance Dam on Unrest and Popular Support Within Egypt

Procedia Manufacturing

Jeffers, Robert F.; Bernard, Michael L.; Passell, Howard D.; Silver, Emily J.

The construction of the Grand Ethiopian Renaissance Dam (GERD) has generated tensions between Egypt and Ethiopia over control of the Nile River in Northern Africa. However, tensions within Egypt have also been pronounced, leading up to and following the Arab Spring uprising of 2011. This study used the Behavior Influence Assessment (BIA) framework to simulate a dynamic hypothesis regarding how tensions within Egypt may evolve given the impacts of the GERD. Primarily, we addressed the interplay between four parties over an upcoming ten-year period: the Egyptian Regime, the Military-Elite, the Militant population, and the non-Militant population. The core tenant of the hypothesis is that rising food prices was a strong driver to the unrest leading up to the Arab Spring events and that this same type of economic stress could be driven by the GERD—albeit with different political undertones. Namely, the GERD offers the Regime a target for inciting nationalism, and while this may buy the regime time to fix the underlying economic impacts, ultimately there exists a tipping point beyond which exponentially increasing unrest is unavoidable without implementing strong measures, such as state militarization.

More Details

Sustainability innovation foundry - FY13: Merging research and operations

McNeish, Jerry M.; Mizner, Jack H.; Passell, Howard D.; Keller, Elizabeth J.; Sullivan, Kristina S.; Gordon, Margaret E.

Sustainability is a critical national security issue for the U.S. and other nations. Sandia National Laboratories (SNL) is already a global leader in sustainability science and technology (SS&T) as documented in this report. This report documents the ongoing work conducted this year as part of the Sustainability Innovation Foundry (SIF). The efforts of the SIF support Sandia's national and international security missions related to sustainability and resilience revolving around energy use, water use, and materials, both on site at Sandia and externally. The SIF leverages existing Sandia research and development (R&D) in sustainability science and technology to support new solutions to complex problems. The SIF also builds on existing Sandia initiatives to support transformation of Sandia into a fully sustainable entity in terms of materials, energy, and water use. In the long term, the SIF will demonstrate the efficacy of sustainability technology developed at Sandia through prototyping and test bed approaches and will provide a common platform for support of solutions to the complex problems surrounding sustainability. Highlights from this year include the Sustainability Idea Challenge, improvements in facilities energy use, lectures and presentations from relevant experts in sustainability [Dr. Barry Hughes, University of Denver], and significant development of the Institutional Transformation (IX) modeling tools to support evaluation of proposed modifications to the SNL infrastructure to realize energy savings.

More Details

Viability report for the ByWater Lakes project

Lowry, Thomas S.; Klise, Geoffrey T.; Passell, Howard D.

This report presents the results from the hydrological, ecological, and renewable energy assessments conducted by Sandia National Laboratories at the ByWater Lakes site in Espanola, New Mexico for ByWater Recreation LLC and Avanyu Energy Services through the New Mexico small business assistance (NMSBA) program. Sandia's role was to assess the viability and provide perspective for enhancing the site to take advantage of renewable energy resources, improve and sustain the natural systems, develop a profitable operation, and provide an asset for the local community. Integral to this work was the identification the pertinent data and data gaps as well as making general observations about the potential issues and concerns that may arise from further developing the site. This report is informational only with no consideration with regards to the business feasibility of the various options that ByWater and Avanyu may be pursuing.

More Details

Energy-water analysis of the 10-year WECC transmission planning study cases

Tidwell, Vincent C.; Passell, Howard D.

In 2011 the Department of Energy's Office of Electricity embarked on a comprehensive program to assist our Nation's three primary electric interconnections with long term transmission planning. Given the growing concern over water resources in the western U.S. the Western Electricity Coordinating Council (WECC) requested assistance with integrating water resource considerations into their broader electric transmission planning. The result is a project with three overarching objectives: (1) Develop an integrated Energy-Water Decision Support System (DSS) that will enable planners in the Western Interconnection to analyze the potential implications of water stress for transmission and resource planning. (2) Pursue the formulation and development of the Energy-Water DSS through a strongly collaborative process between the Western Electricity Coordinating Council (WECC), Western Governors Association (WGA), the Western States Water Council (WSWC) and their associated stakeholder teams. (3) Exercise the Energy-Water DSS to investigate water stress implications of the transmission planning scenarios put forward by WECC, WGA, and WSWC. The foundation for the Energy-Water DSS is Sandia National Laboratories Energy-Power-Water Simulation (EPWSim) model (Tidwell et al. 2009). The modeling framework targets the shared needs of energy and water producers, resource managers, regulators, and decision makers at the federal, state and local levels. This framework provides an interactive environment to explore trade-offs, and 'best' alternatives among a broad list of energy/water options and objectives. The decision support framework is formulated in a modular architecture, facilitating tailored analyses over different geographical regions and scales (e.g., state, county, watershed, interconnection). An interactive interface allows direct control of the model and access to real-time results displayed as charts, graphs and maps. The framework currently supports modules for calculating water withdrawal and consumption for current and planned electric power generation; projected water demand from competing use sectors; and, surface and groundwater availability. WECC's long range planning is organized according to two target planning horizons, a 10-year and a 20-year. This study supports WECC in the 10-year planning endeavor. In this case the water implications associated with four of WECC's alternative future study cases (described below) are calculated and reported. In future phases of planning we will work with WECC to craft study cases that aim to reduce the thermoelectric footprint of the interconnection and/or limit production in the most water stressed regions of the West.

More Details

A study of algal biomass potential in selected Canadian regions

Roach, Jesse D.; Passell, Howard D.

A dynamic assessment model has been developed for evaluating the potential algal biomass and extracted biocrude productivity and costs, using nutrient and water resources available from waste streams in four regions of Canada (western British Columbia, Alberta oil fields, southern Ontario, and Nova Scotia). The purpose of this model is to help identify optimal locations in Canada for algae cultivation and biofuel production. The model uses spatially referenced data across the four regions for nitrogen and phosphorous loads in municipal wastewaters, and CO{sub 2} in exhaust streams from a variety of large industrial sources. Other data inputs include land cover, and solar insolation. Model users can develop estimates of resource potential by manipulating model assumptions in a graphic user interface, and updated results are viewed in real time. Resource potential by location can be viewed in terms of biomass production potential, potential CO{sub 2} fixed, biocrude production potential, and area required. The cost of producing algal biomass can be estimated using an approximation of the distance to move CO{sub 2} and water to the desired land parcel and an estimation of capital and operating costs for a theoretical open pond facility. Preliminary results suggest that in most cases, the CO{sub 2} resource is plentiful compared to other necessary nutrients (especially nitrogen), and that siting and prospects for successful large-scale algae cultivation efforts in Canada will be driven by availability of those other nutrients and the efficiency with which they can be used and re-used. Cost curves based on optimal possible siting of an open pond system are shown. The cost of energy for maintaining optimal growth temperatures is not considered in this effort, and additional research in this area, which has not been well studied at these latitudes, will be important in refining the costs of algal biomass production. The model will be used by NRC-IMB Canada to identify promising locations for both demonstration and pilot-scale algal cultivation projects, including the production potential of using wastewater, and potential land use considerations.

More Details
Results 1–50 of 69
Results 1–50 of 69