Publications

Results 51–100 of 134
Skip to search filters

Superfast assembly and synthesis of gold nanostructures using nanosecond low-temperature compression via magnetic pulsed power

Nature Communications

Li, Binsong; Bian, Kaifu B.; Lane, J.M.; Salerno, K.M.; Grest, Gary S.; Ao, Tommy A.; Hickman, Randy J.; Wise, Jack L.; Wang, Zhongwu; Fan, Hongyou F.

Gold nanostructured materials exhibit important size- and shape-dependent properties that enable a wide variety of applications in photocatalysis, nanoelectronics and phototherapy. Here we show the use of superfast dynamic compression to synthesize extended gold nanostructures, such as nanorods, nanowires and nanosheets, with nanosecond coalescence times. Using a pulsed power generator, we ramp compress spherical gold nanoparticle arrays to pressures of tens of GPa, demonstrating pressure-driven assembly beyond the quasi-static regime of the diamond anvil cell. Our dynamic magnetic ramp compression approach produces smooth, shockless (that is, isentropic) one-dimensional loading with low-temperature states suitable for nanostructure synthesis. Transmission electron microscopy clearly establishes that various gold architectures are formed through compressive mesoscale coalescences of spherical gold nanoparticles, which is further confirmed by in-situ synchrotron X-ray studies and large-scale simulation. This nanofabrication approach applies magnetically driven uniaxial ramp compression to mimic established embossing and imprinting processes, but at ultra-short (nanosecond) timescales.

More Details

Morphology-Controlled Synthesis and Metalation of Porphyrin Nanoparticles with Enhanced Photocatalytic Performance

Nano Letters

Wang, Jiefei; Zhong, Yong; Wang, Liang; Zhang, Na; Cao, Ronghui; Bian, Kaifu B.; Alarid, Leanne J.; Haddad, Raid E.; Bai, Feng; Fan, Hongyou F.

The design and engineering of the size, shape, and chemistry of photoactive building blocks enables the fabrication of functional nanoparticles for applications in light harvesting, photocatalytic synthesis, water splitting, phototherapy, and photodegradation. Here, we report the synthesis of such nanoparticles through a surfactant-assisted interfacial self-assembly process using optically active porphyrin as a functional building block. The self-assembly process relies on specific interactions such as π-π stacking and metalation (metal atoms and ligand coordination) between individual porphyrin building blocks. Depending on the kinetic conditions and type of surfactants, resulting structures exhibit well-defined one- to three-dimensional morphologies such as nanowires, nanooctahedra, and hierarchically ordered internal architectures. Specifically, electron microscopy and X-ray diffraction results indicate that these nanoparticles exhibit stable single-crystalline and nanoporous frameworks. Due to the hierarchical ordering of the porphyrins, the nanoparticles exhibit collective optical properties resulted from coupling of molecular porphyrins and photocatalytic activities such as photodegradation of methyl orange (MO) pollutants and hydrogen production.

More Details

High Fidelity Modeling of Ionic Conduction in Solids

Zhou, Xiaowang Z.; Doty, Fred P.; Foster, Michael E.; Yang, Pin Y.; Fan, Hongyou F.

TlBr has the properties to become the leading radiation detection semiconductor. It has not yet been deployed due to a short lifetime of only hours to weeks. While the rapid structural deteriorations must come from ionic conduction under operating electrical fields, detailed aging mechanisms have not been understood. As a result, progress to extend lifetime has been limited despite extensive studies in the past. We have developed new atomistic simulation capabilities to enable study of ionic conduction under electrical fields. Our combined simulations and experiments indicate that dislocations in TlBr climb under electrical fields. This climb is the root cause for structural deterioration. Hence, we discovered new strengthening methods to reduce aging. Our new atomistic simulation approach can have broader impact on other Sandia programs including battery research. Our project results in 4 publications, a new invention, new LAMMPS capabilities, solution to mission relevant materials, and numerous presentations.

More Details

Preparation of highly luminescent and color tunable carbon nanodots under visible light excitation for in vitro and in vivo bio-imaging

Journal of Materials Research

Zheng, Min; Liu, Shi; Li, Jing; Xie, Zhigang; Qu, Dan; Miao, Xiang; Jing, Xiabin; Sun, Zaicheng; Fan, Hongyou F.

Carbon nanodots (CDs) have generated enormous excitement because of their superiority in water solubility, chemical inertness, low toxicity, ease of functionalization and resistance to photobleaching. Here we report a facile thermal pyrolysis route to prepare CDs with high quantum yield (QY) using citric acid as the carbon source and ethylene diamine derivatives (EDAs) including triethylenetetramine (TETA), tetraethylenepentamine (TEPA) and polyene polyamine (PEPA) as the passivation agents. We find that the CDs prepared from EDAs, such as TETA, TEPA and PEPA, show relatively high photoluminescence (PL) QY (11.4, 10.6, and 9.8%, respectively) at λex of 465 nm. The cytotoxicity of the CDs has been investigated through in vitro and in vivo bio-imaging studies. The results indicate that these CDs possess low toxicity and good biocompatibility. The unique properties such as the high PL QY at large excitation wave length and the low toxicity of the resulting CDs make them promising fluorescent nanoprobes for applications in optical bio-imaging and biosensing.

More Details

Tunable Quantum Dot Solids: Impact of Interparticle Interactions on Bulk Properties

Sinclair, Michael B.; Fan, Hongyou F.; Brener, Igal B.; Luk, Ting S.; Liu, Sheng L.

QD-solids comprising self-assembled semiconductor nanocrystals such as CdSe are currently under investigation for use in a wide array of applications including light emitting diodes, solar cells, field effect transistors, photodetectors, and biosensors. The goal of this LDRD project was develop a fundamental understanding of the relationship between nanoparticle interactions and the different regimes of charge and energy transport in semiconductor quantum dot (QD) solids. Interparticle spacing was tuned through the application of hydrostatic pressure in a diamond anvil cell, and the impact on interparticle interactions was probed using x-ray scattering and a variety of static and transient optical spectroscopies. During the course of this LDRD, we discovered a new, previously unknown, route to synthesize semiconductor quantum wires using high pressure sintering of self-assembled quantum dot crystals. We believe that this new, pressure driven synthesis approach holds great potential as a new tool for nanomaterials synthesis and engineering.

More Details

Pressure dependence of electronic states in secondary explosives: comparison between bulk and air/explosive interface

Farrow, Darcie F.; Farrow, Darcie F.; Kohl, Ian T.; Kohl, Ian T.; Rupper, Stephen G.; Rupper, Stephen G.; Alam, Mary K.; Alam, Mary K.; Martin, Laura E.; Martin, Laura E.; Fan, Hongyou F.; Fan, Hongyou F.; Bian, Kaifu B.; Bian, Kaifu B.; Knepper, Robert; Knepper, Robert; Marquez, Michael P.; Marquez, Michael P.; Kay, Jeffrey J.; Kay, Jeffrey J.

Abstract not provided.

A modified Stillinger-Weber potential for TlBr and its polymorphic extension

Journal of Materials Science Research

Zhou, Xiaowang Z.; Foster, Michael E.; Jones, Reese E.; Doty, Fred P.; Yang, Pin Y.; Fan, Hongyou F.

TlBr is promising for g- and x- radiation detection, but suffers from rapid performance degradation under the operating external electric fields. To enable molecular dynamics (MD) studies of this degradation, we have developed a Stillinger-Weber type of TlBr interatomic potential. During this process, we have also addressed two problems of wider interests. First, the conventional Stillinger-Weber potential format is only applicable for tetrahedral structures (e.g., diamond-cubic, zinc-blende, or wurtzite). Here we have modified the analytical functions of the Stillinger-Weber potential so that it can now be used for other crystal structures. Second, past modifications of interatomic potentials cannot always be applied by a broad community because any new analytical functions of the potential would require corresponding changes in the molecular dynamics codes. Here we have developed a polymorphic potential model that simultaneously incorporates Stillinger-Weber, Tersoff, embedded-atom method, and any variations (i.e., modified functions) of these potentials. As a result, we have implemented this polymorphic model in MD code LAMMPS, and demonstrated that our TlBr potential enables stable MD simulations under external electric fields.

More Details

Morphology-controlled self-assembly and synthesis of photocatalytic nanocrystals

Nano Letters

Zhong, Yong; Wang, Jiefei; Zhang, Ruifang; Wei, Wenbo; Wang, Haimiao; Lü, Xinpeng; Bai, Feng; Wu, Huimeng; Haddad, Raid; Fan, Hongyou F.

Abilities to control the size and shape of nanocrystals in order to tune functional properties are an important grand challenge. Here we report a surfactant self-assembly induced micelle encapsulation method to fabricate porphyrin nanocrystals using the optically active precursor zinc porphyrin (ZnTPP). Through confined noncovalent interactions of ZnTPP within surfactant micelles, nanocrystals with a series of morphologies including nanodisk, tetragonal rod, and hexagonal rod, as well as amorphous spherical particle are synthesized with controlled size and dimension. A phase diagram that describes morphology control is achieved via kinetically controlled nucleation and growth. Because of the spatial ordering of ZnTPP, the hierarchical nanocrystals exhibit both collective optical properties resulted from coupling of molecular ZnTPP and shape dependent photocatalytic activities in photo degradation of methyl orange pollutants. This simple ability to exert rational control over dimension and morphology provides new opportunities for practical applications in photocatalysis, sensing, and nanoelectronics.

More Details

Self-assembled nanolaminate coatings (SV)

Fan, Hongyou F.

Sandia National Laboratories (Sandia) and Lockheed Martin Aeronautics (LM Aero) are collaborating to develop affordable, self-assembled, nanocomposite coatings and associated fabrication processes that will be tailored to Lockheed Martin product requirements. The purpose of this project is to develop a family of self-assembled coatings with properties tailored to specific performance requirements, such as antireflective (AR) optics, using Sandia-developed self-assembled techniques. The project met its objectives by development of a simple and economic self-assembly processes to fabricate multifunctional coatings. Specifically, materials, functionalization methods, and associated coating processes for single layer and multiple layers coatings have been developed to accomplish high reflective coatings, hydrophobic coatings, and anti-reflective coatings. Associated modeling and simulations have been developed to guide the coating designs for optimum optical performance. The accomplishments result in significant advantages of reduced costs, increased manufacturing freedom/producibility, improved logistics, and the incorporation of new technology solutions not possible with conventional technologies. These self-assembled coatings with tailored properties will significantly address LMC's needs and give LMC a significant competitive lead in new engineered materials. This work complements SNL's LDRD and BES programs aimed at developing multifunctional nanomaterials for microelectronics and optics as well as structure/property investigations of self-assembled nanomaterials. In addition, this project will provide SNL with new opportunities to develop and apply self-assembled nanocomposite optical coatings for use in the wavelength ranges of 3-5 and 8-12 micrometers, ranges of vital importance to military-based sensors and weapons. The SANC technologies will be applied to multiple programs within the LM Company including the F-35, F-22, ADP (Future Strike Bomber, UAV, UCAV, etc.). The SANC technologies will establish LMA and related US manufacturing capability for commercial and military applications therefore reducing reliance on off-shore development and production of related critical technologies. If these technologies are successfully licensed, production of these coatings in manufactory will create significant technical employment opportunities.

More Details

Real-time studies of battery electrochemical reactions inside a transmission electron microscope

Sullivan, John P.; Huang, Jian Y.; Leung, Kevin L.; Fan, Hongyou F.; Liu, Xiaohua L.; Hudak, Nicholas H.

We report the development of new experimental capabilities and ab initio modeling for real-time studies of Li-ion battery electrochemical reactions. We developed three capabilities for in-situ transmission electron microscopy (TEM) studies: a capability that uses a nanomanipulator inside the TEM to assemble electrochemical cells with ionic liquid or solid state electrolytes, a capability that uses on-chip assembly of battery components on to TEM-compatible multi-electrode arrays, and a capability that uses a TEM-compatible sealed electrochemical cell that we developed for performing in-situ TEM using volatile battery electrolytes. These capabilities were used to understand lithiation mechanisms in nanoscale battery materials, including SnO{sub 2}, Si, Ge, Al, ZnO, and MnO{sub 2}. The modeling approaches used ab initio molecular dynamics to understand early stages of ethylene carbonate reduction on lithiated-graphite and lithium surfaces and constrained density functional theory to understand ethylene carbonate reduction on passivated electrode surfaces.

More Details

Nanomanufacturing : nano-structured materials made layer-by-layer

Schunk, Randy; Grest, Gary S.; Chandross, M.; Reedy, Earl D.; Cox, James C.; Fan, Hongyou F.

Large-scale, high-throughput production of nano-structured materials (i.e. nanomanufacturing) is a strategic area in manufacturing, with markets projected to exceed $1T by 2015. Nanomanufacturing is still in its infancy; process/product developments are costly and only touch on potential opportunities enabled by growing nanoscience discoveries. The greatest promise for high-volume manufacturing lies in age-old coating and imprinting operations. For materials with tailored nm-scale structure, imprinting/embossing must be achieved at high speeds (roll-to-roll) and/or over large areas (batch operation) with feature sizes less than 100 nm. Dispersion coatings with nanoparticles can also tailor structure through self- or directed-assembly. Layering films structured with these processes have tremendous potential for efficient manufacturing of microelectronics, photovoltaics and other topical nano-structured devices. This project is designed to perform the requisite R and D to bring Sandia's technology base in computational mechanics to bear on this scale-up problem. Project focus is enforced by addressing a promising imprinting process currently being commercialized.

More Details
Results 51–100 of 134
Results 51–100 of 134