Upscaling of Mixing-controlled Reactive Transport
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
49th US Rock Mechanics / Geomechanics Symposium 2015
Multiscale characteristics of anisotropic, heterogeneous pore structure and compositional (e.g., kerogen, clay, cement, etc) distribution profoundly influence the hydro, mechanical, and chemical response of shale materials during stimulation and production. In this work the impact of these lithologic heterogeneities on physical, chemical, and mechanical properties is investigated over a micron to core scale of shale samples for Cretaceous Mancos Shale. Principal macroscopic lithofacies at a decimeter scale are petrographically examined. Thin sections (∼2-3cm) impregnated with fluorochromes are examined using laser scanning confocal microscopy and optical microscopy with different filters to characterize micro-facies (i.e., texture patterns) and using electron microprobe to identify the mineralogical distribution. Advanced multiscale image analysis for texture classification will be used to identify key features of samples which will be further analyzed using dual focused ion beam-scanning electron microscopy, aberration corrected-scanning TEM and energy dispersive X-ray spectrometry for nano-pore and organic-pore structures and mineralogies at nano scale. This characterization will be examined against experimental data including acoustic emission and nano-indentation measurements of elastic properties using focused ion-beam milled pillars. Finally, multiscale 3-D image stacks will be segmented to rigorously test the scale of a representative elementary volume based on multiple measures from image analysis and pore-scale simulations.
Abstract not provided.
Reviews in Mineralogy and Geochemistry
Abstract not provided.
Environmental Science & Technology
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.