Publications

Results 26–50 of 109
Skip to search filters

Concurrent multiscale modeling of microstructural effects on localization behavior in finite deformation solid mechanics

Computational Mechanics

Alleman, Coleman A.; Foulk, James W.; Mota, Alejandro M.; Lim, Hojun L.; Littlewood, David J.

The heterogeneity in mechanical fields introduced by microstructure plays a critical role in the localization of deformation. To resolve this incipient stage of failure, it is therefore necessary to incorporate microstructure with sufficient resolution. On the other hand, computational limitations make it infeasible to represent the microstructure in the entire domain at the component scale. In this study, the authors demonstrate the use of concurrent multiscale modeling to incorporate explicit, finely resolved microstructure in a critical region while resolving the smoother mechanical fields outside this region with a coarser discretization to limit computational cost. The microstructural physics is modeled with a high-fidelity model that incorporates anisotropic crystal elasticity and rate-dependent crystal plasticity to simulate the behavior of a stainless steel alloy. The component-scale material behavior is treated with a lower fidelity model incorporating isotropic linear elasticity and rate-independent J2 plasticity. The microstructural and component scale subdomains are modeled concurrently, with coupling via the Schwarz alternating method, which solves boundary-value problems in each subdomain separately and transfers solution information between subdomains via Dirichlet boundary conditions. In this study, the framework is applied to model incipient localization in tensile specimens during necking.

More Details

Investigating Ta strength across multiple platforms strain rates and pressures

Mattsson, Thomas M.; Flicker, Dawn G.; Benage, John F.; Battaile, Corbett C.; Brown, Justin L.; Lane, James M.; Lim, Hojun L.; Arsenlis, Thomas A.; Barton, Nathan R.; Park, Hye-Sook P.; Swift, Damian C.; Prisbrey, Shon T.; Austin, Ryan A.; McNabb, Dennis P.; Remington, Bruce A.; Prime, Michael B.; Gray, George T.; Bronkhorst, Curt B.; Shen, Shuh-Rong S.; Luscher, D.J.L.; Scharff, Robert J.; Fensin, Sayu J.; Schraad, Mark W.; Dattelbaum, Dana M.; Brown, Staci L.

Abstract not provided.

Developing strong concurrent multiphysics multiscale coupling to understand the impact of microstructural mechanisms on the structural scale

Foulk, James W.; Alleman, Coleman A.; Mota, Alejandro M.; Lim, Hojun L.; Littlewood, David J.; Bergel, Guy L.; Popova, Evdokia P.; Montes de Oca Zapiain, David M.

The heterogeneity in mechanical fields introduced by microstructure plays a critical role in the localization of deformation. To resolve this incipient stage of failure, it is therefore necessary to incorporate microstructure with sufficient resolution. On the other hand, computational limitations make it infeasible to represent the microstructure in the entire domain at the component scale. In this study, the authors demonstrate the use of concurrent multi- scale modeling to incorporate explicit, finely resolved microstructure in a critical region while resolving the smoother mechanical fields outside this region with a coarser discretization to limit computational cost. The microstructural physics is modeled with a high-fidelity model that incorporates anisotropic crystal elasticity and rate-dependent crystal plasticity to simulate the behavior of a stainless steel alloy. The component-scale material behavior is treated with a lower fidelity model incorporating isotropic linear elasticity and rate-independent J 2 plas- ticity. The microstructural and component scale subdomains are modeled concurrently, with coupling via the Schwarz alternating method, which solves boundary-value problems in each subdomain separately and transfers solution information between subdomains via Dirichlet boundary conditions. Beyond cases studies in concurrent multiscale, we explore progress in crystal plastic- ity through modular designs, solution methodologies, model verification, and extensions to Sierra/SM and manycore applications. Advances in conformal microstructures having both hexahedral and tetrahedral workflows in Sculpt and Cubit are highlighted. A structure-property case study in two-phase metallic composites applies the Materials Knowledge System to local metrics for void evolution. Discussion includes lessons learned, future work, and a summary of funded efforts and proposed work. Finally, an appendix illustrates the need for two-way coupling through a single degree of freedom.

More Details

A cross-platform comparison of dynamic material strength for tantalum

Flicker, Dawn G.; Prime, Michael, L.; Gray, GT, L.; Chen, SR, L.; Schraad, M.S.; Dattelbaum, D.D.; Fensin, S.F.; Preston, D.P.; Butler, W.B.; Sjue, S.S.; Arsenlis, T.A.; Park, H-S P.; McNabb, D.M.; Barton, N.B.; Remington, B.R.; Prisbey, S.P.; Austin, R.A.; Swift, D.S.; Benage, John F.; Lane, James M.; Brown, Justin L.; Lim, Hojun L.; Battaile, Corbett C.; Mattsson, Thomas M.; Sun, Amy C.; Moore, Alexander M.

Abstract not provided.

Mechanism of the Bauschinger effect in Al-Ge-Si alloys

Materials Science and Engineering: A

Gan, Wei; Bong, Hyuk J.; Lim, Hojun L.; Boger, R.K.; Barlat, F.; Wagoner, R.H.

Wrought Al-Ge-Si alloys were designed and produced to ensure dislocation bypass strengthening (“hard pin” precipitates) without significant precipitate cutting/shearing (“soft pin” precipitates). These unusual alloys were processed from the melt, solution heat treated and aged. Aging curves at temperatures of 120, 160, 200 and 240 °C were established and the corresponding precipitate spacings, sizes, and morphologies were measured using TEM. The role of non-shearable precipitates in determining the magnitude of Bauschinger was revealed using large-strain compression/tension tests. The effect of precipitates on the Bauschinger response was stronger than that of grain boundaries, even for these dilute alloys. The Bauschinger effect increases dramatically from the under-aged to the peak aged condition and remains constant or decreases slowly through over-aging. This is consistent with reported behavior for Al-Cu alloys (maximum effect at peak aging) and for other Al alloys (increasing through over-aging) such as Al-Cu-Li, Al 6111, Al 2524, and Al 6013. The Al-Ge-Si alloy response was simulated with three microstructural models, including a novel SD (SuperDislocation) model, to reveal the origins of the Bauschinger effect in dilute precipitation-hardened / bypass alloys. The dominant mechanism is related to the elastic interaction of polarized dislocation arrays (generalized pile-up or bow-out model) at precipitate obstacles. Such effects are ignored in continuum and crystal plasticity models.

More Details

Mechanisms for Ductile Rupture - FY16 ESC Progress Report

Boyce, Brad B.; Carroll, Jay D.; Noell, Philip N.; Bufford, Daniel C.; Clark, Blythe C.; Hattar, Khalid M.; Lim, Hojun L.; Battaile, Corbett C.

Ductile rupture in metals is generally a multi-step process of void nucleation, growth, and coalescence. Particle decohesion and particle fracture are generally invoked as the primary microstructural mechanisms for room-temperature void nucleation. However, because high-purity materials also fail by void nucleation and coalescence, other microstructural features must also act as sites for void nucleation. Early studies of void initiation in high-purity materials, which included post-mortem fracture surface characterization using scanning electron microscopy (SEM) and high-voltage electron microscopy (HVEM) and in-situ HVEM observations of fracture, established the presence of dislocation cell walls as void initiation sites in high-purity materials. Direct experimental evidence for this contention was obtained during in-situ HVEM tensile tests of Be single crystals. Voids between 0.2 and 1 μm long appeared suddenly along dislocation cell walls during tensile straining. However, subsequent attempts to replicate these results in other materials, particularly α -Fe single crystals, were unsuccessful because of the small size of the dislocation cells, and these remain the only published in-situ HVEM observations of void nucleation at dislocation cell walls in the absence of a growing macrocrack. Despite this challenge, other approaches to studying void nucleation in high-purity metals also indicate that dislocation cell walls are nucleation sites for voids.

More Details

Strain-rate dependence of ramp-wave evolution and strength in tantalum

Physical Review B

Lane, J.M.; Foiles, Stephen M.; Lim, Hojun L.; Brown, Justin L.

We have conducted molecular dynamics (MD) simulations of quasi-isentropic ramp-wave compression to very high pressures over a range of strain rates from 1011 down to 108 1/s. Using scaling methods, we collapse wave profiles from various strain rates to a master profile curve, which shows deviations when material response is strain-rate dependent. Thus, we can show with precision where, and how, strain-rate dependence affects the ramp wave. We find that strain rate affects the stress-strain material response most dramatically at strains below 20%, and that above 30% strain the material response is largely independent of strain rate. We show good overall agreement with experimental stress-strain curves up to approximately 30% strain, above which simulated response is somewhat too stiff. We postulate that this could be due to our interatomic potential or to differences in grain structure and/or size between simulation and experiment. Strength is directly measured from per-atom stress tensor and shows significantly enhanced elastic response at the highest strain rates. This enhanced elastic response is less pronounced at higher pressures and at lower strain rates.

More Details
Results 26–50 of 109
Results 26–50 of 109