Publications

Results 1–50 of 105
Skip to search filters

Xyce™ Parallel Electronic Simulator Users' Guide (V.7.6)

Keiter, Eric R.; Russo, Thomas V.; Schiek, Richard S.; Thornquist, Heidi K.; Mei, Ting M.; Verley, Jason V.; Aadithya, Karthik V.; Schickling, Joshua D.

This manual describes the use of the Xyce™ Parallel Electronic Simulator. Xyce™ has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: (1) Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). This includes support for most popular parallel and serial computers. (2) A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows one to develop new types of analysis without requiring the implementation of analysis-specific device models. (3) Device models that are specifically tailored to meet Sandia's needs, including some radiation-aware devices (for Sandia users only). (4) Object-oriented code design and implementation using modern coding practices. Xyce™ is a parallel code in the most general sense of the phrase—a message passing parallel implementation—which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel eficiency is achieved as the number of processors grows.

More Details

Xyce™ Parallel Electronic Simulator Reference Guide (V.7.6)

Keiter, Eric R.; Russo, Thomas V.; Schiek, Richard S.; Thornquist, Heidi K.; Mei, Ting M.; Verley, Jason V.; Aadithya, Karthik V.; Schickling, Joshua D.

This document is a reference guide to the Xyce™ Parallel Electronic Simulator, and is a companion document to the Xyce™ Users' Guide. The focus of this document is (to the extent possible) exhaustively list device parameters, solver options, parser options, and other usage details of Xyce™. This document is not intended to be a tutorial. Users who are new to circuit simulation are better served by the Xyce™ Users' Guide.

More Details

Xyce™ Parallel Electronic Simulator Users' Guide, Version 7.5

Keiter, Eric R.; Russo, Thomas V.; Schiek, Richard S.; Thornquist, Heidi K.; Mei, Ting M.; Verley, Jason V.; Aadithya, Karthik V.; Schickling, Joshua D.

This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: (1) Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). This includes support for most popular parallel and serial computers. (2) A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows one to develop new types of analysis without requiring the implementation of analysis-specific device models. (3) Device models that are specifically tailored to meet Sandia's needs, including some radiation-aware devices (for Sandia users only). (4) Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase — a message passing parallel implementation — which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows.

More Details

Xyce™ Parallel Electronic Simulator Reference Guide, Version 7.5

Keiter, Eric R.; Russo, Thomas V.; Schiek, Richard S.; Thornquist, Heidi K.; Mei, Ting M.; Verley, Jason V.; Aadithya, Karthik V.; Schickling, Joshua D.

This document is a reference guide to the Xyce Parallel Electronic Simulator, and is a companion document to the Xyce Users' Guide. The focus of this document is (to the extent possible) exhaustively list device parameters, solver options, parser options, and other usage details of Xyce. This document is not intended to be a tutorial. Users who are new to circuit simulation are better served by the Xyce Users' Guide.

More Details

Xyce Parallel Electronic Simulator Users' Guide Version 7.4

Keiter, Eric R.; Russo, Thomas V.; Schiek, Richard S.; Thornquist, Heidi K.; Mei, Ting M.; Verley, Jason V.; Sholander, Peter E.; Aadithya, Karthik V.; Schickling, Joshua D.

This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: • Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). This includes support for most popular parallel and serial computers. • A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows one to develop new types of analysis without requiring the implementation of analysis-specific device models. • Device models that are specifically tailored to meet Sandia’s needs, including some radiation-aware devices (for Sandia users only). • Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase — a message passing parallel implementation — which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows.

More Details

Xyce™ Parallel Electronic Simulator Reference Guide (V.7.4)

Keiter, Eric R.; Russo, Thomas V.; Schiek, Richard S.; Thornquist, Heidi K.; Mei, Ting M.; Verley, Jason V.; Sholander, Peter E.; Aadithya, Karthik V.; Schickling, Joshua D.

This document is a reference guide to the Xyce Parallel Electronic Simulator, and is a companion document to the Xyce Users' Guide. The focus of this document is (to the extent possible) exhaustively list device parameters, solver options, parser options, and other usage details of Xyce. This document is not intended to be a tutorial. Users who are new to circuit simulation are better served by the Xyce Users' Guide.

More Details

Xyce™ Parallel Electronic Simulator Reference Guide, Version 7.3

Keiter, Eric R.; Russo, Thomas V.; Schiek, Richard S.; Thornquist, Heidi K.; Mei, Ting M.; Verley, Jason V.; Sholander, Peter E.; Aadithya, Karthik V.

This document is a reference guide to the Xyce Parallel Electronic Simulator, and is a companion document to the Xyce Users' Guide. The focus of this document is (to the extent possible) exhaustively list device parameters, solver options, parser options, and other usage details of Xyce. This document is not intended to be a tutorial. Users who are new to circuit simulation are better served by the Xyce Users' Guide.

More Details

Xyce Parallel Electronic Simulator Users' Guide (V. 7.3)

Keiter, Eric R.; Russo, Thomas V.; Schiek, Richard S.; Thornquist, Heidi K.; Mei, Ting M.; Verley, Jason V.; Sholander, Peter E.; Aadithya, Karthik V.

This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). This includes support for most popular parallel and serial computers; A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows one to develop new types of analysis without requiring the implementation of analysis-specific device models; Device models that are specifically tailored to meet Sandia's needs, including some radiation-aware devices (for Sandia users only); Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase—a message passing parallel implementation—which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows.

More Details

Xyce Parallel Electronic Simulator Users' Guide (V.7.1)

Keiter, Eric R.; Russo, Thomas V.; Schiek, Richard S.; Thornquist, Heidi K.; Mei, Ting M.; Verley, Jason V.; Sholander, Peter E.; Aadithya, Karthik V.

This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: 1) Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). This includes support for most popular parallel and serial computers. 2) A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows one to develop new types of analysis without requiring the implementation of analysis-specific device models. 3) Device models that are specifically tailored to meet Sandia's needs, including some radiation-aware devices (for Sandia users only). 4) Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase a message passing parallel implementation which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows.

More Details

Exploring Advanced Embedded Uncertainty Quantification methods in Xyce

Keiter, Eric R.; Aadithya, Karthik V.; Mei, Ting M.; Thornquist, Heidi K.; Sholander, Peter E.; Wilcox, Ian Z.

This report summarizes the methods and algorithms that were developed on the Sandia National Laboratory LDRD project entitled "Polynomial Chaos methods in Xyce for Embedded Uncertainty Quantification in Circuit Analysis", which was project 200265 and proposal 2019-0817. As much of our work has been published in other reports and publications, this report gives a brief summary. Those who are interested in the technical details are encouraged to read the full published results and also contact the report authors for the status of follow-on projects.

More Details

Xyce Parallel Electronic Simulator Users' Guide Version 6.10

Keiter, Eric R.; Aadithya, Karthik V.; Mei, Ting M.; Russo, Thomas V.; Schiek, Richard S.; Sholander, Peter E.; Thornquist, Heidi K.; Verley, Jason V.

This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been de- signed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: Capability to solve extremely large circuit problems by supporting large-scale parallel com- puting platforms (up to thousands of processors). This includes support for most popular parallel and serial computers. A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows one to develop new types of analysis without requiring the implementation of analysis-specific device models. Device models that are specifically tailored to meet Sandia's needs, including some radiation- aware devices (for Sandia users only). Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase -- a message passing parallel implementation -- which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows.

More Details

Xyce Parallel Electronic Simulator Reference Guide Version 6.10

Keiter, Eric R.; Aadithya, Karthik V.; Mei, Ting M.; Russo, Thomas V.; Schiek, Richard S.; Sholander, Peter E.; Thornquist, Heidi K.; Verley, Jason V.

This document is a reference guide to the Xyce Parallel Electronic Simulator, and is a companion document to the Xyce Users' Guide [1] . The focus of this document is (to the extent possible) exhaustively list device parameters, solver options, parser options, and other usage details of Xyce . This document is not intended to be a tutorial. Users who are new to circuit simulation are better served by the Xyce Users' Guide [1] . Copyright c 2002 National Technology & Engineering Solutions of Sandia, LLC (NTESS). Acknowledgements We would like to acknowledge all the code and test suite developers who have contributed to the Xyce project over the years: Alan Lundin, Arlon Waters, Ashley Meek, Bart van Bloemen Waanders, Brad Bond, Brian Fett, Christina Warrender, David Baur, David Day, David Shirley, Deborah Fixel, Derek Barnes, Eric Rankin, Erik Zeek, Gary Hennigan, Herman "Buddy" Watts, Jim Emery, Keith Santarelli, Laura Boucheron, Lawrence Musson, Mary Meinelt, Mingyu "Genie" Hsieh, Nicholas Johnson, Philip Campbell, Rebecca Arnold, Regina Schells, Richard Drake, Robert Hoekstra, Roger Pawlowski, Russell Hooper, Samuel Browne, Scott Hutchinson, Smitha Sam, Steven Verzi, Tamara Kolda, Timur Takhtaganov, and Todd Coffey. Also, thanks to Hue Lai for the original typesetting of this document in L A T E X. Trademarks Xyce Electronic Simulator TM and Xyce TM are trademarks of National Technology & Engineering Solutions of Sandia, LLC (NTESS). All other trademarks are property of their respective owners. Contact Information Outside Sandia World Wide Web http://xyce.sandia.gov Email xyce@sandia.gov Inside Sandia World Wide Web http://xyce.sandia.gov Email xyce-sandia@sandia.gov Bug Reports http://joseki-vm.sandia.gov/bugzilla http://morannon.sandia.gov/bugzilla

More Details

Basker: Parallel sparse LU factorization utilizing hierarchical parallelism and data layouts

Parallel Computing

Booth, Joshua D.; Ellingwood, Nathan D.; Thornquist, Heidi K.; Rajamanickam, Sivasankaran

Transient simulation in circuit simulation tools, such as SPICE and Xyce, depend on scalable and robust sparse LU factorizations for efficient numerical simulation of circuits and power grids. As the need for simulations of very large circuits grow, the prevalence of multicore architectures enable us to use shared memory parallel algorithms for such simulations. A parallel factorization is a critical component of such shared memory parallel simulations. We develop a parallel sparse factorization algorithm that can solve problems from circuit simulations efficiently, and map well to architectural features. This new factorization algorithm exposes hierarchical parallelism to accommodate irregular structure that arise in our target problems. It also uses a hierarchical two-dimensional data layout which reduces synchronization costs and maps to memory hierarchy found in multicore processors. We present an OpenMP based implementation of the parallel algorithm in a new multithreaded solver called Basker in the Trilinos framework. We present performance evaluations of Basker on the Intel SandyBridge and Xeon Phi platforms using circuit and power grid matrices taken from the University of Florida sparse matrix collection and from Xyce circuit simulation. Basker achieves a geometric mean speedup of 5.91× on CPU (16 cores) and 7.4× on Xeon Phi (32 cores) relative to state-of-the-art solver KLU. Basker outperforms Intel MKL Pardiso solver (PMKL) by as much as 30× on CPU (16 cores) and 7.5× on Xeon Phi (32 cores) for low fill-in circuit matrices. Furthermore, Basker provides 5.4× speedup on a challenging matrix sequence taken from an actual Xyce simulation.

More Details

Xyce™ Parallel Electronic Simulator Reference Guide Version 6.8

Keiter, Eric R.; Aadithya, Karthik V.; Mei, Ting M.; Russo, Thomas V.; Schiek, Richard S.; Sholander, Peter E.; Thornquist, Heidi K.; Verley, Jason V.

This document is a reference guide to the Xyce Parallel Electronic Simulator, and is a companion document to the Xyce Users' Guide. The focus of this document is (to the extent possible) exhaustively list device parameters, solver options, parser options, and other usage details of Xyce . This document is not intended to be a tutorial. Users who are new to circuit simulation are better served by the Xyce Users' Guide.

More Details

Xyce Parallel Electronic Simulator Users' Guide Version 6.8

Keiter, Eric R.; Aadithya, Karthik V.; Mei, Ting M.; Russo, Thomas V.; Schiek, Richard S.; Sholander, Peter E.; Thornquist, Heidi K.; Verley, Jason V.

This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been de- signed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: Capability to solve extremely large circuit problems by supporting large-scale parallel com- puting platforms (up to thousands of processors). This includes support for most popular parallel and serial computers. A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows one to develop new types of analysis without requiring the implementation of analysis-specific device models. Device models that are specifically tailored to meet Sandia's needs, including some radiation- aware devices (for Sandia users only). Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase$-$ a message passing parallel implementation $-$ which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows.

More Details

Xyce Parallel Electronic Simulator Reference Guide Version 6.7

Keiter, Eric R.; Aadithya, Karthik V.; Mei, Ting M.; Russo, Thomas V.; Schiek, Richard S.; Sholander, Peter E.; Thornquist, Heidi K.; Verley, Jason V.

This document is a reference guide to the Xyce Parallel Electronic Simulator, and is a companion document to the Xyce Users' Guide [1] . The focus of this document is (to the extent possible) exhaustively list device parameters, solver options, parser options, and other usage details of Xyce . This document is not intended to be a tutorial. Users who are new to circuit simulation are better served by the Xyce Users' Guide [1] . The information herein is subject to change without notice. Copyright c 2002-2017 Sandia Corporation. All rights reserved. Trademarks Xyce TM Electronic Simulator and Xyce TM are trademarks of Sandia Corporation. Orcad, Orcad Capture, PSpice and Probe are registered trademarks of Cadence Design Systems, Inc. Microsoft, Windows and Windows 7 are registered trademarks of Microsoft Corporation. Medici, DaVinci and Taurus are registered trademarks of Synopsys Corporation. Amtec and TecPlot are trademarks of Amtec Engineering, Inc. All other trademarks are property of their respective owners. Contacts World Wide Web http://xyce.sandia.gov https://info.sandia.gov/xyce (Sandia only) Email xyce@sandia.gov (outside Sandia) xyce-sandia@sandia.gov (Sandia only) Bug Reports (Sandia only) http://joseki-vm.sandia.gov/bugzilla http://morannon.sandia.gov/bugzilla

More Details

Xyce Parallel Electronic Simulator Users' Guide Version 6.7

Keiter, Eric R.; Aadithya, Karthik V.; Mei, Ting M.; Russo, Thomas V.; Schiek, Richard S.; Sholander, Peter E.; Thornquist, Heidi K.; Verley, Jason V.

This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: Capability to solve extremely large circuit problems by supporting large-scale parallel com- puting platforms (up to thousands of processors). This includes support for most popular parallel and serial computers. A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows one to develop new types of analysis without requiring the implementation of analysis-specific device models. Device models that are specifically tailored to meet Sandia's needs, including some radiation- aware devices (for Sandia users only). Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase -- a message passing parallel implementation -- which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows. The information herein is subject to change without notice. Copyright c 2002-2017 Sandia Corporation. All rights reserved. Trademarks Xyce TM Electronic Simulator and Xyce TM are trademarks of Sandia Corporation. Orcad, Orcad Capture, PSpice and Probe are registered trademarks of Cadence Design Systems, Inc. Microsoft, Windows and Windows 7 are registered trademarks of Microsoft Corporation. Medici, DaVinci and Taurus are registered trademarks of Synopsys Corporation. Amtec and TecPlot are trademarks of Amtec Engineering, Inc. All other trademarks are property of their respective owners. Contacts World Wide Web http://xyce.sandia.gov https://info.sandia.gov/xyce (Sandia only) Email xyce@sandia.gov (outside Sandia) xyce-sandia@sandia.gov (Sandia only) Bug Reports (Sandia only) http://joseki-vm.sandia.gov/bugzilla http://morannon.sandia.gov/bugzilla

More Details

Xyce Parallel Electronic Simulator Reference Guide Version 6.6

Keiter, Eric R.; Aadithya, Karthik V.; Mei, Ting M.; Russo, Thomas V.; Schiek, Richard S.; Sholander, Peter E.; Thornquist, Heidi K.; Verley, Jason V.

This document is a reference guide to the Xyce Parallel Electronic Simulator, and is a companion document to the Xyce Users' Guide [1] . The focus of this document is (to the extent possible) exhaustively list device parameters, solver options, parser options, and other usage details of Xyce . This document is not intended to be a tutorial. Users who are new to circuit simulation are better served by the Xyce Users' Guide [1] . The information herein is subject to change without notice. Copyright c 2002-2016 Sandia Corporation. All rights reserved. Acknowledgements The BSIM Group at the University of California, Berkeley developed the BSIM3, BSIM4, BSIM6, BSIM-CMG and BSIM-SOI models. The BSIM3 is Copyright c 1999, Regents of the University of California. The BSIM4 is Copyright c 2006, Regents of the University of California. The BSIM6 is Copyright c 2015, Regents of the University of California. The BSIM-CMG is Copyright c 2012 and 2016, Regents of the University of California. The BSIM-SOI is Copyright c 1990, Regents of the University of California. All rights reserved. The Mextram model has been developed by NXP Semiconductors until 2007, Delft University of Technology from 2007 to 2014, and Auburn University since April 2015. Copyrights c of Mextram are with Delft University of Technology, NXP Semiconductors and Auburn University. The MIT VS Model Research Group developed the MIT Virtual Source (MVS) model. Copyright c 2013 Massachusetts Institute of Technology (MIT). The EKV3 MOSFET model was developed by the EKV Team of the Electronics Laboratory-TUC of the Technical University of Crete. Trademarks Xyce TM Electronic Simulator and Xyce TM are trademarks of Sandia Corporation. Orcad, Orcad Capture, PSpice and Probe are registered trademarks of Cadence Design Systems, Inc. Microsoft, Windows and Windows 7 are registered trademarks of Microsoft Corporation. Medici, DaVinci and Taurus are registered trademarks of Synopsys Corporation. Amtec and TecPlot are trademarks of Amtec Engineering, Inc. All other trademarks are property of their respective owners. Contacts World Wide Web http://xyce.sandia.gov https://info.sandia.gov/xyce (Sandia only) Email xyce@sandia.gov (outside Sandia) xyce-sandia@sandia.gov (Sandia only) Bug Reports (Sandia only) http://joseki-vm.sandia.gov/bugzilla http://morannon.sandia.gov/bugzilla

More Details

Xyce Parallel Electronic Simulator Users' Guide Version 6.6

Keiter, Eric R.; Aadithya, Karthik V.; Mei, Ting M.; Russo, Thomas V.; Schiek, Richard S.; Sholander, Peter E.; Thornquist, Heidi K.; Verley, Jason V.

This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been de- signed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: Capability to solve extremely large circuit problems by supporting large-scale parallel com- puting platforms (up to thousands of processors). This includes support for most popular parallel and serial computers. A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows one to develop new types of analysis without requiring the implementation of analysis-specific device models. Device models that are specifically tailored to meet Sandia's needs, including some radiation- aware devices (for Sandia users only). Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase -- a message passing parallel implementation -- which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows. The information herein is subject to change without notice. Copyright c 2002-2016 Sandia Corporation. All rights reserved. Acknowledgements The BSIM Group at the University of California, Berkeley developed the BSIM3, BSIM4, BSIM6, BSIM-CMG and BSIM-SOI models. The BSIM3 is Copyright c 1999, Regents of the University of California. The BSIM4 is Copyright c 2006, Regents of the University of California. The BSIM6 is Copyright c 2015, Regents of the University of California. The BSIM-CMG is Copyright c 2012 and 2016, Regents of the University of California. The BSIM-SOI is Copyright c 1990, Regents of the University of California. All rights reserved. The Mextram model has been developed by NXP Semiconductors until 2007, Delft University of Technology from 2007 to 2014, and Auburn University since April 2015. Copyrights c of Mextram are with Delft University of Technology, NXP Semiconductors and Auburn University. The MIT VS Model Research Group developed the MIT Virtual Source (MVS) model. Copyright c 2013 Massachusetts Institute of Technology (MIT). The EKV3 MOSFET model was developed by the EKV Team of the Electronics Laboratory-TUC of the Technical University of Crete. Trademarks Xyce TM Electronic Simulator and Xyce TM are trademarks of Sandia Corporation. Orcad, Orcad Capture, PSpice and Probe are registered trademarks of Cadence Design Systems, Inc. Microsoft, Windows and Windows 7 are registered trademarks of Microsoft Corporation. Medici, DaVinci and Taurus are registered trademarks of Synopsys Corporation. Amtec and TecPlot are trademarks of Amtec Engineering, Inc. All other trademarks are property of their respective owners. Contacts World Wide Web http://xyce.sandia.gov https://info.sandia.gov/xyce (Sandia only) Email xyce@sandia.gov (outside Sandia) xyce-sandia@sandia.gov (Sandia only) Bug Reports (Sandia only) http://joseki-vm.sandia.gov/bugzilla http://morannon.sandia.gov/bugzilla

More Details

Basker: A threaded sparse LU factorization utilizing hierarchical parallelism and data layouts

Proceedings - 2016 IEEE 30th International Parallel and Distributed Processing Symposium, IPDPS 2016

Booth, Joshua D.; Rajamanickam, Sivasankaran R.; Thornquist, Heidi K.

Scalable sparse LU factorization is critical for efficient numerical simulation of circuits and electrical power grids. In this work, we present a new scalable sparse direct solver called Basker. Basker introduces a new algorithm to parallelize the Gilbert-Peierls algorithm for sparse LU factorization. As architectures evolve, there exists a need for algorithms that are hierarchical in nature to match the hierarchy in thread teams, individual threads, and vector level parallelism. Basker is designed to map well to this hierarchy in architectures. There is also a need for data layouts to match multiple levels of hierarchy in memory. Basker uses a two-dimensional hierarchical structure of sparse matrices that maps to the hierarchy in the memory architectures and to the hierarchy in parallelism. We present performance evaluations of Basker on the Intel SandyBridge and Xeon Phi platforms using circuit and power grid matrices taken from the University of Florida sparse matrix collection and from Xyce circuit simulations. Basker achieves a geometric mean speedup of 5.91× on CPU (16 cores) and 7.4× on Xeon Phi (32 cores) relative to KLU. Basker outperforms Intel MKL Pardiso (PMKL) by as much as 30× on CPU (16 cores) and 7.5× on Xeon Phi (32 cores) for low fill-in circuit matrices. Furthermore, Basker provides 5.4× speedup on a challenging matrix sequence taken from an actual Xyce simulation.

More Details

Xyce™ Parallel Electronic Simulator Users' Guide, Version 6.5

Keiter, Eric R.; Aadithya, Karthik V.; Mei, Ting M.; Russo, Thomas V.; Schiek, Richard S.; Sholander, Peter E.; Thornquist, Heidi K.; Verley, Jason V.

This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). This includes support for most popular parallel and serial computers. A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows one to develop new types of analysis without requiring the implementation of analysis-specific device models. Device models that are specifically tailored to meet Sandia's needs, including some radiation- aware devices (for Sandia users only). Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase -- a message passing parallel implementation -- which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows. The information herein is subject to change without notice. Copyright © 2002-2016 Sandia Corporation. All rights reserved.

More Details

Xyce™ Parallel Electronic Simulator Reference Guide, Version 6.5

Keiter, Eric R.; Aadithya, Karthik V.; Mei, Ting M.; Russo, Thomas V.; Schiek, Richard S.; Sholander, Peter E.; Thornquist, Heidi K.; Verley, Jason V.

This document is a reference guide to the Xyce Parallel Electronic Simulator, and is a companion document to the Xyce Users’ Guide. The focus of this document is (to the extent possible) exhaustively list device parameters, solver options, parser options, and other usage details of Xyce. This document is not intended to be a tutorial. Users who are new to circuit simulation are better served by the Xyce Users’ Guide. The information herein is subject to change without notice. Copyright © 2002-2016 Sandia Corporation. All rights reserved.

More Details

Xyce Parallel Electronic Simulator Users Guide Version 6.4

Keiter, Eric R.; Mei, Ting M.; Russo, Thomas V.; Schiek, Richard S.; Sholander, Peter E.; Thornquist, Heidi K.; Verley, Jason V.; Baur, David G.

This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been de- signed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: Capability to solve extremely large circuit problems by supporting large-scale parallel com- puting platforms (up to thousands of processors). This includes support for most popular parallel and serial computers. A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows one to develop new types of analysis without requiring the implementation of analysis-specific device models. Device models that are specifically tailored to meet Sandia's needs, including some radiation- aware devices (for Sandia users only). Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase -- a message passing parallel implementation -- which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows. Trademarks The information herein is subject to change without notice. Copyright c 2002-2015 Sandia Corporation. All rights reserved. Xyce TM Electronic Simulator and Xyce TM are trademarks of Sandia Corporation. Portions of the Xyce TM code are: Copyright c 2002, The Regents of the University of California. Produced at the Lawrence Livermore National Laboratory. Written by Alan Hindmarsh, Allan Taylor, Radu Serban. UCRL-CODE-2002-59 All rights reserved. Orcad, Orcad Capture, PSpice and Probe are registered trademarks of Cadence Design Systems, Inc. Microsoft, Windows and Windows 7 are registered trademarks of Microsoft Corporation. Medici, DaVinci and Taurus are registered trademarks of Synopsys Corporation. Amtec and TecPlot are trademarks of Amtec Engineering, Inc. Xyce 's expression library is based on that inside Spice 3F5 developed by the EECS Department at the University of California. The EKV3 MOSFET model was developed by the EKV Team of the Electronics Laboratory-TUC of the Technical University of Crete. All other trademarks are property of their respective owners. Contacts Bug Reports (Sandia only) http://joseki.sandia.gov/bugzilla http://charleston.sandia.gov/bugzilla World Wide Web http://xyce.sandia.gov http://charleston.sandia.gov/xyce (Sandia only) Email xyce@sandia.gov (outside Sandia) xyce-sandia@sandia.gov (Sandia only)

More Details

Xyce Parallel Electronic Simulator Reference Guide Version 6.4

Keiter, Eric R.; Mei, Ting M.; Russo, Thomas V.; Schiek, Richard S.; Sholander, Peter E.; Thornquist, Heidi K.; Verley, Jason V.; Baur, David G.

This document is a reference guide to the Xyce Parallel Electronic Simulator, and is a companion document to the Xyce Users' Guide [1] . The focus of this document is (to the extent possible) exhaustively list device parameters, solver options, parser options, and other usage details of Xyce . This document is not intended to be a tutorial. Users who are new to circuit simulation are better served by the Xyce Users' Guide [1] . Trademarks The information herein is subject to change without notice. Copyright c 2002-2015 Sandia Corporation. All rights reserved. Xyce TM Electronic Simulator and Xyce TM are trademarks of Sandia Corporation. Portions of the Xyce TM code are: Copyright c 2002, The Regents of the University of California. Produced at the Lawrence Livermore National Laboratory. Written by Alan Hindmarsh, Allan Taylor, Radu Serban. UCRL-CODE-2002-59 All rights reserved. Orcad, Orcad Capture, PSpice and Probe are registered trademarks of Cadence Design Systems, Inc. Microsoft, Windows and Windows 7 are registered trademarks of Microsoft Corporation. Medici, DaVinci and Taurus are registered trademarks of Synopsys Corporation. Amtec and TecPlot are trademarks of Amtec Engineering, Inc. Xyce 's expression library is based on that inside Spice 3F5 developed by the EECS Department at the University of California. The EKV3 MOSFET model was developed by the EKV Team of the Electronics Laboratory-TUC of the Technical University of Crete. All other trademarks are property of their respective owners. Contacts Bug Reports (Sandia only) http://joseki.sandia.gov/bugzilla http://charleston.sandia.gov/bugzilla World Wide Web http://xyce.sandia.gov http://charleston.sandia.gov/xyce (Sandia only) Email xyce@sandia.gov (outside Sandia) xyce-sandia@sandia.gov (Sandia only)

More Details

Assessing the role of mini-applications in predicting key performance characteristics of scientific and engineering applications

Journal of Parallel and Distributed Computing

Barrett, R.F.; Crozier, Paul C.; Doerfler, Douglas W.; Heroux, Michael A.; Lin, Paul L.; Thornquist, Heidi K.; Trucano, Timothy G.; Vaughan, Courtenay T.

Computational science and engineering application programs are typically large, complex, and dynamic, and are often constrained by distribution limitations. As a means of making tractable rapid explorations of scientific and engineering application programs in the context of new, emerging, and future computing architectures, a suite of "miniapps" has been created to serve as proxies for full scale applications. Each miniapp is designed to represent a key performance characteristic that does or is expected to significantly impact the runtime performance of an application program. In this paper we introduce a methodology for assessing the ability of these miniapps to effectively represent these performance issues. We applied this methodology to three miniapps, examining the linkage between them and an application they are intended to represent. Herein we evaluate the fidelity of that linkage. This work represents the initial steps required to begin to answer the question, "Under what conditions does a miniapp represent a key performance characteristic in a full app?"

More Details

Xyce Parallel Electronic Simulator Users Guide Version 6.2

Keiter, Eric R.; Mei, Ting M.; Russo, Thomas V.; Schiek, Richard S.; Sholander, Peter E.; Thornquist, Heidi K.; Verley, Jason V.; Baur, David G.

This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been de- signed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: Capability to solve extremely large circuit problems by supporting large-scale parallel com- puting platforms (up to thousands of processors). This includes support for most popular parallel and serial computers. A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows one to develop new types of analysis without requiring the implementation of analysis-specific device models. Device models that are specifically tailored to meet Sandia's needs, including some radiation- aware devices (for Sandia users only). Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase -- a message passing parallel implementation -- which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows. Trademarks The information herein is subject to change without notice. Copyright c 2002-2014 Sandia Corporation. All rights reserved. Xyce TM Electronic Simulator and Xyce TM are trademarks of Sandia Corporation. Portions of the Xyce TM code are: Copyright c 2002, The Regents of the University of California. Produced at the Lawrence Livermore National Laboratory. Written by Alan Hindmarsh, Allan Taylor, Radu Serban. UCRL-CODE-2002-59 All rights reserved. Orcad, Orcad Capture, PSpice and Probe are registered trademarks of Cadence Design Systems, Inc. Microsoft, Windows and Windows 7 are registered trademarks of Microsoft Corporation. Medici, DaVinci and Taurus are registered trademarks of Synopsys Corporation. Amtec and TecPlot are trademarks of Amtec Engineering, Inc. Xyce 's expression library is based on that inside Spice 3F5 developed by the EECS Department at the University of California. The EKV3 MOSFET model was developed by the EKV Team of the Electronics Laboratory-TUC of the Technical University of Crete. All other trademarks are property of their respective owners. Contacts Bug Reports (Sandia only) http://joseki.sandia.gov/bugzilla http://charleston.sandia.gov/bugzilla World Wide Web http://xyce.sandia.gov http://charleston.sandia.gov/xyce (Sandia only) Email xyce@sandia.gov (outside Sandia) xyce-sandia@sandia.gov (Sandia only)

More Details
Results 1–50 of 105
Results 1–50 of 105