Non-Traditional Surveillance Systems and their Application to Safeguards
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
New technologies have been, and are continuing to be, developed for Safeguards, Arms Control, and Physical Protection. Application spaces and technical requirements are evolving - Overlaps are developing. Lessons learned from IAEA's extensive experience could benefit other communities. Technologies developed for other applications may benefit Safeguards - Inherent cost benefits and improvements in procurement security processes.
In this report, we systematically evaluate the ability of current-generation, satellite-based spectroscopic sensors to distinguish uranium mines and mills from other mineral mining and milling operations. We perform this systematic evaluation by (1) outlining the remote, spectroscopic signal generation process, (2) documenting the capabilities of current commercial satellite systems, (3) systematically comparing the uranium mining and milling process to other mineral mining and milling operations, and (4) identifying the most promising observables associated with uranium mining and milling that can be identified using satellite remote sensing. The Ranger uranium mine and mill in Australia serves as a case study where we apply and test the techniques developed in this systematic analysis. Based on literature research of mineral mining and milling practices, we develop a decision tree which utilizes the information contained in one or more observables to determine whether uranium is possibly being mined and/or milled at a given site. Promising observables associated with uranium mining and milling at the Ranger site included in the decision tree are uranium ore, sulfur, the uranium pregnant leach liquor, ammonia, and uranyl compounds and sulfate ion disposed of in the tailings pond. Based on the size, concentration, and spectral characteristics of these promising observables, we then determine whether these observables can be identified using current commercial satellite systems, namely Hyperion, ASTER, and Quickbird. We conclude that the only promising observables at Ranger that can be uniquely identified using a current commercial satellite system (notably Hyperion) are magnesium chlorite in the open pit mine and the sulfur stockpile. Based on the identified magnesium chlorite and sulfur observables, the decision tree narrows the possible mineral candidates at Ranger to uranium, copper, zinc, manganese, vanadium, the rare earths, and phosphorus, all of which are milled using sulfuric acid leaching.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Wireless networking can provide a cost effective and convenient method for installing and operating an unattended or remote monitoring system in an established facility. There is concern, however, that wireless devices can interfere with each other and with other radio systems within the facility. Additionally, there is concern that these devices add a potential risk to the security of the network. Since all data is transmitted in the air, it is possible for an unauthorized user to intercept the data transmissions and/or insert data onto the network if proper security is not in place. This paper describes a study being undertaken to highlight the benefits of wireless networking, evaluate interference and methods for mitigation, recommend security architectures, and present the results of a wireless network demonstration between Sandia National Laboratories (SNL) and the Joint Research Centre (JRC).
Wireless networking using the IEEE 802.11standards is a viable alternative for data communications in safeguards applications. This paper discusses the range of 802.11-based networking applications, along with their advantages and disadvantages. For maximum performance, safety, and security, Wireless networking should be implemented only after a comprehensive site survey has determined detailed requirements, hazards, and threats.
Abstract not provided.
Abstract not provided.
The Authenticated Tracking and Monitoring System (ATMS) is designed to answer the need for global monitoring of the status and location of proliferation-sensitive items on a worldwide basis, 24 hours a day. ATMS uses wireless sensor packs to monitor the status of the items within the shipment and surrounding environmental conditions. Receiver and processing units collect a variety of sensor event data that is integrated with GPS tracking data. The collected data are transmitted to the International Maritime Satellite (INMARSAT) communication system, which then sends the data to mobile ground stations. Authentication and encryption algorithms secure the data during communication activities. A typical ATMS application would be to track and monitor the stiety and security of a number of items in transit along a scheduled shipping route. The resulting tracking, timing, and status information could then be processed to ensure compliance with various agreements.