Publications

Results 1–25 of 72
Skip to search filters

Laser-driven ionization mechanisms of aluminum for single particle aerosol mass spectrometry

Spectrochimica Acta. Part B, Atomic Spectroscopy

Lietz, Amanda M.; Yee, Benjamin T.; Musk, Jeffrey H.; Moffat, Harry K.; Wiemann, Dora K.; Settecerri, Taylor S.; Fergenson, David F.; Omana, Michael A.; Hopkins, Matthew M.

Single particle aerosol mass spectrometry (SPAMS), an analytical technique for measuring the size and composition of individual micron-scale particles, is capable of analyzing atmospheric pollutants and bioaerosols much more efficiently and with more detail than conventional methods which require the collection of particles onto filters for analysis in the laboratory. Despite SPAMS’ demonstrated capabilities, the primary mechanisms of ionization are not fully understood, which creates challenges in optimizing and interpreting SPAMS signals. In this paper, we present a well-stirred reactor model for the reactions involved with the laser-induced vaporization and ionization of an individual particle. The SPAMS conditions modeled in this paper include a 248 nm laser which is pulsed for 8 ns to vaporize and ionize each particle in vacuum. The ionization of 1 μm, spherical Al particles was studied by approximating them with a 0-dimensional plasma chemistry model. The primary mechanism of absorption of the 248 nm photons was pressure-broadened direct photoexcitation to Al(y2D). Atoms in this highly excited state then undergo superelastic collisions with electrons, heating the electrons and populating the lower energy excited states. We found that the primary ionization mechanism is electron impact ionization of various excited state Al atoms, especially Al(y2D). Because the gas expands rapidly into vacuum, its temperature decreases rapidly. The rate of three-body recombination (e- + e- + Al+ → Al + e-) increases at low temperature, and most of the electrons and ions produced recombine within several μs of the laser pulse. The importance of the direct photoexcitation indicates that the relative peak heights of different elements in SPAMS mass spectra may be sensitive to the available photoexcitation transitions. We also discuss the effects of laser intensity, particle diameter, and expansion dynamics.

More Details

0D Modeling of Reactor Networks Within Zuzax

Moffat, Harry K.; Jove Colon, Carlos F.

We report on progress in developing macroscopic balance equations for combustion and electrochemistry systems. A steady state solution capability is described for the macroscopic reactor network, with an associated steady state continuation method and solution storage capability added in. An example is provided of continuation of a hydrogen flame versus the equivalence ratio. The reactor modeling capability is extended to charged fluid systems, with a description of the new ChargedFluidReactor, SubstrateElement, and MetalCurrentElement reactor classes and novel setup of unknowns within these reactors that preserve charge neutrality. Zuzax's setup for electrochemistry is explained including the specification of the electron chemical potential and the adherence to the SHE Reference electrode specification. The description of the different ways to enter electrochemical reaction rates are described, contrasted, and their derivations with respect to one another are derived. An example of using the ChargedFluidReactor within corrosion problems is provided. We present a description of calculations to understand the phenomena of corrosion of copper from a micron sized droplet of NaCl water droplet, where secondary spreading occurs. An analysis of the discrepancies with experiment is carried out, demonstrating that macroscopic balances can be an important tool for understanding what major factors need to be addressed for a better understanding of a physical system.

More Details

Modeling Activities Related to Waste Form Degradation: Progress Report

Jove Colon, Carlos F.; Criscenti, Louise C.; Padilla, Mekalah P.; Weck, Philippe F.; Moffat, Harry K.; Sassani, David C.

More Details

Multi-fidelity electrochemical modeling of thermally activated battery cells

Journal of Power Sources

Voskuilen, Tyler V.; Moffat, Harry K.; Schroeder, Benjamin B.

Thermally activated batteries undergo a series of coupled physical changes during activation that influence battery performance. These processes include energetic material burning, heat transfer, electrolyte phase change, capillary-driven two-phase porous flow, ion transport, electrochemical reactions, and electrical transport. Several of these processes are strongly coupled and have a significant effect on battery performance, but others have minimal impact or may be suitably represented by reduced-order models. Assessing the relative importance of these phenomena must be based on comparisons to a high-fidelity model including all known processes. In this work, we first present and demonstrate a high-fidelity, multi-physics model of electrochemical performance. This novel multi-physics model enables predictions of how competing physical processes affect battery performance and provides unique insights into the difficult-to-measure processes that happen during battery activation. We introduce four categories of model fidelity that include different physical simplifications, assumptions, and reduced-order models to decouple or remove costly elements of the simulation. Using this approach, we show an order-of-magnitude reduction in computational cost while preserving all design-relevant quantities of interest within 5 percent. The validity of this approach and these model reductions is demonstrated by comparison between results from the full fidelity model and the different reduced models.

More Details

Electrochemical aspects of copper atmospheric corrosion in the presence of sodium chloride

Electrochimica Acta

Schindelholz, Eric J.; Cong, H.; Jove Colon, Carlos F.; Li, S.; Ohlhausen, J.A.; Moffat, Harry K.

This study describes the evolving state of electrolyte and corrosion processes associated with sodium chloride on copper at the initial stage of corrosion and the critical implications of this behavior on controlling kinetics and damage distributions. Sodium chloride droplets were placed on copper in humid conditions and the resulting electrolyte properties, corrosion products and damage were characterized over time using time-lapse imaging, micro Raman spectroscopy, TOF-SIMS and optical profilometry. Within minutes of NaCl droplet placement, NaOH-rich films resultant from oxygen reduction advanced stepwise from the droplets, leaving behind concentric trenching attack patterns suggestive of moving anode-cathode pairs at the alkaline film front. Corrosion attack under these spreading alkaline films was up to 10x greater than under the original NaCl drops. Furthermore, solid Cu2Cl(OH)3 shells formed over the surface of the NaCl drops within hours of exposure. Thermodynamic modeling along with immersed electrochemical experiments in simulated droplet and films electrolytes were used to rationalize this behavior and build a description of the rapidly evolving corroding system.

More Details
Results 1–25 of 72
Results 1–25 of 72