Publications

Results 76–100 of 378
Skip to search filters

Global sensitivity analysis and estimation of model error, toward uncertainty quantification in scramjet computations

AIAA Journal

Huan, Xun H.; Safta, Cosmin S.; Geraci, Gianluca G.; Eldred, Michael S.; Vane, Zachary P.; Lacaze, Guilhem M.; Oefelein, Joseph C.; Najm, H.N.

The development of scramjet engines is an important research area for advancing hypersonic and orbital flights. Progress toward optimal engine designs requires accurate flow simulations together with uncertainty quantification. However, performing uncertainty quantification for scramjet simulations is challenging due to the large number of uncertainparameters involvedandthe high computational costofflow simulations. These difficulties are addressedin this paper by developing practical uncertainty quantification algorithms and computational methods, and deploying themin the current studyto large-eddy simulations ofajet incrossflow inside a simplified HIFiRE Direct Connect Rig scramjet combustor. First, global sensitivity analysis is conducted to identify influential uncertain input parameters, which can help reduce the system's stochastic dimension. Second, because models of different fidelity are used in the overall uncertainty quantification assessment, a framework for quantifying and propagating the uncertainty due to model error is presented. These methods are demonstrated on a nonreacting jet-in-crossflow test problem in a simplified scramjet geometry, with parameter space up to 24 dimensions, using static and dynamic treatments of the turbulence subgrid model, and with two-dimensional and three-dimensional geometries.

More Details

Low-rank canonical-tensor decomposition of potential energy surfaces: application to grid-based diagrammatic vibrational Green’s function theory

Molecular Physics

Rai, Prashant R.; Sargsyan, Khachik S.; Najm, H.N.; Hermes, Matthew R.; Hirata, So

A new method is proposed for a fast evaluation of high-dimensional integrals of potential energy surfaces (PES) that arise in many areas of quantum dynamics. It decomposes a PES into a canonical low-rank tensor format, reducing its integral into a relatively short sum of products of low-dimensional integrals. The decomposition is achieved by the alternating least squares (ALS) algorithm, requiring only a small number of single-point energy evaluations. Therefore, it eradicates a force-constant evaluation as the hotspot of many quantum dynamics simulations and also possibly lifts the curse of dimensionality. This general method is applied to the anharmonic vibrational zero-point and transition energy calculations of molecules using the second-order diagrammatic vibrational many-body Green's function (XVH2) theory with a harmonic-approximation reference. In this application, high dimensional PES and Green's functions are both subjected to a low-rank decomposition. Evaluating the molecular integrals over a low-rank PES and Green's functions as sums of low-dimensional integrals using the Gauss–Hermite quadrature, this canonical-tensor-decomposition-based XVH2 (CT-XVH2) achieves an accuracy of 0.1 cm−1 or higher and nearly an order of magnitude speedup as compared with the original algorithm using force constants for water and formaldehyde.

More Details

Inference given summary statistics

Handbook of Uncertainty Quantification

Najm, H.N.; Chowdhary, Kenny

In many practical situations, where one is interested in employing Bayesian inference methods to infer parameters of interest, a significant challenge is that actual data is not available. Rather, what is most commonly available in the literature are summary statistics on the data, on parameters of interest, or on functions thereof. In this chapter, we present a general framework relying on the maximum entropy principle, and employing approximate Bayesian computation methods, to infer a joint posterior density on parameters of interest given summary statistics, as well as other known details about the experiment or observational system behind the published statistics. By essentially redoing the experimental fitting using proposed data sets, the method ensures that the inferred joint posterior density on model parameters is consistent with the given statistics and with the model.

More Details

Computational singular perturbation analysis of stochastic chemical systems with stiffness

Journal of Computational Physics

Wang, Lijin; Han, Xiaoying; Cao, Yanzhao; Najm, H.N.

Computational singular perturbation (CSP) is a useful method for analysis, reduction, and time integration of stiff ordinary differential equation systems. It has found dominant utility, in particular, in chemical reaction systems with a large range of time scales at continuum and deterministic level. On the other hand, CSP is not directly applicable to chemical reaction systems at micro or meso-scale, where stochasticity plays an non-negligible role and thus has to be taken into account. In this work we develop a novel stochastic computational singular perturbation (SCSP) analysis and time integration framework, and associated algorithm, that can be used to not only construct accurately and efficiently the numerical solutions to stiff stochastic chemical reaction systems, but also analyze the dynamics of the reduced stochastic reaction systems. The algorithm is illustrated by an application to a benchmark stochastic differential equation model, and numerical experiments are carried out to demonstrate the effectiveness of the construction.

More Details
Results 76–100 of 378
Results 76–100 of 378