Publications

Results 51–75 of 378
Skip to search filters

Interatomic Potentials Models for Cu-Ni and Cu-Zr Alloys

Safta, Cosmin S.; Geraci, Gianluca G.; Eldred, Michael S.; Najm, H.N.; Riegner, David R.; Windl, Wolfgang W.

This study explores a Bayesian calibration framework for the RAMPAGE alloy potential model for Cu-Ni and Cu-Zr systems, respectively. In RAMPAGE potentials, it is proposed that once calibrated potentials for individual elements are available, the inter-species interac- tions can be described by fitting a Morse potential for pair interactions with three parameters, while densities for the embedding function can be scaled by two parameters from the elemen- tal densities. Global sensitivity analysis tools were employed to understand the impact each parameter has on the MD simulation results. A transitional Markov Chain Monte Carlo al- gorithm was used to generate samples from the multimodal posterior distribution consistent with the discrepancy between MD simulation results and DFT data. For the Cu-Ni system the posterior predictive tests indicate that the fitted interatomic potential model agrees well with the DFT data, justifying the basic RAMPAGE assumtions. For the Cu-Zr system, where the phase diagram suggests more complicated atomic interactions than in the case of Cu-Ni, the RAMPAGE potential captured only a subset of the DFT data. The resulting posterior distri- bution for the 5 model parameters exhibited several modes, with each mode corresponding to specific simulation data and a suboptimal agreement with the DFT results.

More Details

Probabilistic inference of reaction rate parameters from summary statistics

Combustion Theory and Modelling

Khalil, Mohammad K.; Najm, H.N.

This investigation tackles the probabilistic parameter estimation problem involving the Arrhenius parameters for the rate coefficient of the chain branching reaction H + O2 → OH + O. This is achieved in a Bayesian inference framework that uses indirect data from the literature in the form of summary statistics by approximating the maximum entropy solution with the aid of approximate bayesian computation. The summary statistics include nominal values and uncertainty factors of the rate coefficient, obtained from shock-tube experiments performed at various initial temperatures. The Bayesian framework allows for the incorporation of uncertainty in the rate coefficient of a secondary reaction, namely OH + H2 → H2O + H, resulting in a consistent joint probability density on Arrhenius parameters for the two rate coefficients. It also allows for uncertainty quantification in numerical ignition predictions while conforming with the published summary statistics. The method relies on probabilistic reconstruction of the unreported data, OH concentration profiles from shock-tube experiments, along with the unknown Arrhenius parameters. The data inference is performed using a Markov chain Monte Carlo sampling procedure that relies on an efficient adaptive quadrature in estimating relevant integrals needed for data likelihood evaluations. For further efficiency gains, local Padé–Legendre approximants are used as surrogates for the time histories of OH concentration, alleviating the need for 0-D auto-ignition simulations. The reconstructed realisations of the missing data are used to provide a consensus joint posterior probability density on the unknown Arrhenius parameters via probabilistic pooling. Uncertainty quantification analysis is performed for stoichiometric hydrogen–air auto-ignition computations to explore the impact of uncertain parameter correlations on a range of quantities of interest.

More Details

Compressed sparse tensor based quadrature for vibrational quantum mechanics integrals

Computer Methods in Applied Mechanics and Engineering

Rai, P.; Sargsyan, Khachik S.; Najm, H.N.

A new method for fast evaluation of high dimensional integrals arising in quantum mechanics is proposed. The method is based on sparse approximation of a high dimensional function followed by a low-rank compression. In the first step, we interpret the high dimensional integrand as a tensor in a suitable tensor product space and determine its entries by a compressed sensing based algorithm using only a few function evaluations. Secondly, we implement a rank reduction strategy to compress this tensor in a suitable low-rank tensor format using standard tensor compression tools. This allows representing a high dimensional integrand function as a small sum of products of low dimensional functions. Finally, a low dimensional Gauss–Hermite quadrature rule is used to integrate this low-rank representation, thus alleviating the curse of dimensionality. Numerical tests on synthetic functions, as well as on energy correction integrals for water and formaldehyde molecules demonstrate the efficiency of this method using very few function evaluations as compared to other integration strategies.

More Details

Chance-constrained economic dispatch with renewable energy and storage

Computational Optimization and Applications

Cheng, Jianqiang; Chen, Richard L.; Najm, H.N.; Pinar, Ali P.; Safta, Cosmin S.; Watson, Jean-Paul W.

Increasing penetration levels of renewables have transformed how power systems are operated. High levels of uncertainty in production make it increasingly difficulty to guarantee operational feasibility; instead, constraints may only be satisfied with high probability. We present a chance-constrained economic dispatch model that efficiently integrates energy storage and high renewable penetration to satisfy renewable portfolio requirements. Specifically, we require that wind energy contribute at least a prespecified proportion of the total demand and that the scheduled wind energy is deliverable with high probability. We develop an approximate partial sample average approximation (PSAA) framework to enable efficient solution of large-scale chance-constrained economic dispatch problems. Computational experiments on the IEEE-24 bus system show that the proposed PSAA approach is more accurate, closer to the prescribed satisfaction tolerance, and approximately 100 times faster than standard sample average approximation. Finally, the improved efficiency of our PSAA approach enables solution of a larger WECC-240 test system in minutes.

More Details

Global Sensitivity Analysis and Estimation of Model Error, Toward Uncertainty Quantification in Scramjet Computations

AIAA Journal

Huan, Xun H.; Safta, Cosmin S.; Sargsyan, Khachik S.; Geraci, Gianluca G.; Eldred, Michael S.; Vane, Zachary P.; Lacaze, Guilhem L.; Oefelein, Joseph C.; Najm, H.N.

The development of scramjet engines is an important research area for advancing hypersonic and orbital flights. Progress toward optimal engine designs requires accurate flow simulations together with uncertainty quantification. However, performing uncertainty quantification for scramjet simulations is challenging due to the large number of uncertain parameters involved and the high computational cost of flow simulations. These difficulties are addressed in this paper by developing practical uncertainty quantification algorithms and computational methods, and deploying them in the current study to large-eddy simulations of a jet in crossflow inside a simplified HIFiRE Direct Connect Rig scramjet combustor. First, global sensitivity analysis is conducted to identify influential uncertain input parameters, which can help reduce the system’s stochastic dimension. Second, because models of different fidelity are used in the overall uncertainty quantification assessment, a framework for quantifying and propagating the uncertainty due to model error is presented. Finally, these methods are demonstrated on a nonreacting jet-in-crossflow test problem in a simplified scramjet geometry, with parameter space up to 24 dimensions, using static and dynamic treatments of the turbulence subgrid model, and with two-dimensional and three-dimensional geometries.

More Details
Results 51–75 of 378
Results 51–75 of 378