Uncertainty Quanti%02cation for Large-Scale Ocean Circulation Predictions
Abstract not provided.
Abstract not provided.
Abstract not provided.
This paper presents recent progress on the use of Computational Singular Perturbation (CSP) techniques for time integration of stiff chemical systems. The CSP integration approach removes fast time scales from the reaction system, thereby enabling integration with explicit time stepping algorithms. For further efficiency improvements, a tabulation strategy was developed to allow reuse of the relevant CSP quantities. This paper outlines the method and demonstrates its use on the simulation of hydrogen-air ignition.
Abstract not provided.
Proceedings of the Combustion Institute
An automated procedure has been previously developed to generate simplified skeletal reaction mechanisms for the combustion of n-heptane/air mixtures at equivalence ratios between 0.5 and 2.0 and different pressures. The algorithm is based on a Computational Singular Perturbation (CSP)-generated database of importance indices computed from homogeneous n-heptane/air ignition solutions. In this paper, we examine the accuracy of these simplified mechanisms when they are used for modeling laminar n-heptane/air premixed flames. The objective is to evaluate the accuracy of the simplified models when transport processes lead to local mixture compositions that are not necessarily part of the comprehensive homogeneous ignition databases. The detailed mechanism was developed by Curran et al. and involves 560 species and 2538 reactions. The smallest skeletal mechanism considered consists of 66 species and 326 reactions. We show that these skeletal mechanisms yield good agreement with the detailed model for premixed n-heptane flames, over a wide range of equivalence ratios and pressures, for global flame properties. They also exhibit good accuracy in predicting certain elements of internal flame structure, especially the profiles of temperature and major chemical species. On the other hand, we find larger errors in the concentrations of many minor/radical species, particularly in the region where low-temperature chemistry plays a significant role. We also observe that the low-temperature chemistry of n-heptane can play an important role at very lean or very rich mixtures, reaching these limits first at high pressure. This has implications to numerical simulations of non-premixed flames where these lean and rich regions occur naturally. © 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
Abstract not provided.
Analytical Chemistry
We present a rapid method for the identification of viruses using microfluidic chip gel electrophoresis (CGE) of high-copy number proteins to generate unique protein profiles. Viral proteins are solubilized by heating at 95°C in borate buffer containing detergent (5 min), then labeled with fluorescamine dye (10 s), and analyzed using the μChemLab CGE system (5 min). Analyses of closely related T2 and T4 bacteriophage demonstrate sufficient assay sensitivity and peak resolution to distinguish the two phage. CGE analyses of four additional viruses - MS2 bacteriophage, Epstein - Barr, respiratory syncytial, and vaccinia viruses - demonstrate reproducible and visually distinct protein profiles. To evaluate the suitability of the method for unique identification of viruses, we employed a Bayesian classification approach. Using a subset of 126 replicate electropherograms of the six viruses and phage for training purposes, successful classification with non-training data was 66/69 or 95% with no false positives. The classification method is based on a single attribute (elution time), although other attributes such as peak width, peak amplitude, or peak shape could be incorporated and may improve performance further. The encouraging results suggest a rapid and simple way to identify viruses without requiring specialty reagents such as PCR probes and antibodies. © 2008 American Chemical Society.
Fundamentals of ion transport in nanopores were studied through a joint experimental and computational effort. The study evaluated both nanoporous polymer membranes and track-etched nanoporous polycarbonate membranes. The track-etched membranes provide a geometrically well characterized platform, while the polymer membranes are more closely related to ion exchange systems currently deployed in RO and ED applications. The experimental effort explored transport properties of the different membrane materials. Poly(aniline) membranes showed that flux could be controlled by templating with molecules of defined size. Track-etched polycarbonate membranes were modified using oxygen plasma treatments, UV-ozone exposure, and UV-ozone with thermal grafting, providing an avenue to functionalized membranes, increased wettability, and improved surface characteristic lifetimes. The modeling effort resulted in a novel multiphysics multiscale simulation model for field-driven transport in nanopores. This model was applied to a parametric study of the effects of pore charge and field strength on ion transport and charge exclusion in a nanopore representative of a track-etched polycarbonate membrane. The goal of this research was to uncover the factors that control the flux of ions through a nanoporous material and to develop tools and capabilities for further studies. Continuation studies will build toward more specific applications, such as polymers with attached sulfonate groups, and complex modeling methods and geometries.
Terrorist attacks using an aerosolized pathogen preparation have gained credibility as a national security concern since the anthrax attacks of 2001. The ability to characterize the parameters of such attacks, i.e., to estimate the number of people infected, the time of infection, the average dose received, and the rate of disease spread in contemporary American society (for contagious diseases), is important when planning a medical response. For non-contagious diseases, we address the characterization problem by formulating a Bayesian inverse problem predicated on a short time-series of diagnosed patients exhibiting symptoms. To keep the approach relevant for response planning, we limit ourselves to 3.5 days of data. In computational tests performed for anthrax, we usually find these observation windows sufficient, especially if the outbreak model employed in the inverse problem is accurate. For contagious diseases, we formulated a Bayesian inversion technique to infer both pathogenic transmissibility and the social network from outbreak observations, ensuring that the two determinants of spreading are identified separately. We tested this technique on data collected from a 1967 smallpox epidemic in Abakaliki, Nigeria. We inferred, probabilistically, different transmissibilities in the structured Abakaliki population, the social network, and the chain of transmission. Finally, we developed an individual-based epidemic model to realistically simulate the spread of a rare (or eradicated) disease in a modern society. This model incorporates the mixing patterns observed in an (American) urban setting and accepts, as model input, pathogenic transmissibilities estimated from historical outbreaks that may have occurred in socio-economic environments with little resemblance to contemporary society. Techniques were also developed to simulate disease spread on static and sampled network reductions of the dynamic social networks originally in the individual-based model, yielding faster, though approximate, network-based epidemic models. These reduced-order models are useful in scenario analysis for medical response planning, as well as in computationally intensive inverse problems.
Many systems involving chemical reactions between small numbers of molecules exhibit inherent stochastic variability. Such stochastic reaction networks are at the heart of processes such as gene transcription, cell signaling or surface catalytic reactions, which are critical to bioenergy, biomedical, and electrical storage applications. The underlying molecular reactions are commonly modeled with chemical master equations (CMEs), representing jump Markov processes, or stochastic differential equations (SDEs), rather than ordinary differential equations (ODEs). As such reaction networks are often inferred from noisy experimental data, it is not uncommon to encounter large parametric uncertainties in these systems. Further, a wide range of time scales introduces the need for reduced order representations. Despite the availability of mature tools for uncertainty/sensitivity analysis and reduced order modeling in deterministic systems, there is a lack of robust algorithms for such analyses in stochastic systems. In this talk, we present advances in algorithms for predictability and reduced order representations for stochastic reaction networks and apply them to bistable systems of biochemical interest. To study the predictability of a stochastic reaction network in the presence of both parametric uncertainty and intrinsic variability, an algorithm was developed to represent the system state with a spectral polynomial chaos (PC) expansion in the stochastic space representing parametric uncertainty and intrinsic variability. Rather than relying on a non-intrusive collocation-based Galerkin projection [1], this PC expansion is obtained using Bayesian inference, which is ideally suited to handle noisy systems through its probabilistic formulation. To accommodate state variables with multimodal distributions, an adaptive multiresolution representation is used [2]. As the PC expansion directly relates the state variables to the uncertain parameters, the formulation lends itself readily to sensitivity analysis. Reduced order modeling in the time dimension is accomplished using a Karhunen-Loeve (KL) decomposition of the stochastic process in terms of the eigenmodes of its covariance matrix. Subsequently, a Rosenblatt transformation relates the random variables in the KL decomposition to a set of independent random variables, allowing the representation of the system state with a PC expansion in those independent random variables. An adaptive clustering method is used to handle multimodal distributions efficiently, and is well suited for high-dimensional spaces. The spectral representation of the stochastic reaction networks makes these systems more amenable to analysis, enabling a detailed understanding of their functionality, and robustness under experimental data uncertainty and inherent variability.
While models of combustion processes have been successful in developing engines with improved fuel economy, more costly simulations are required to accurately model pollution chemistry. These simulations will also involve significant parametric uncertainties. Computational singular perturbation (CSP) and polynomial chaos-uncertainty quantification (PC-UQ) can be used to mitigate the additional computational cost of modeling combustion with uncertain parameters. PC-UQ was used to interrogate and analyze the Davis-Skodje model, where the deterministic parameter in the model was replaced with an uncertain parameter. In addition, PC-UQ was combined with CSP to explore how model reduction could be combined with uncertainty quantification to understand how reduced models are affected by parametric uncertainty.
We present computations of a methane-air edge flame stabilized against an incoming flow mixing layer, using detailed methane-air chemistry. We analyze the computed edge flame, with a focus on NO-structure. We examine the spatial distribution of NO and its production/consumption rate. We investigate the breakdown of the NO source term among the thermal, prompt, N{sub 2}O, and NO{sub 2} pathways. We examine the contributions of the four pathways at different locations, as the edge flame structure changes with downstream distance, tending to a classical diffusion flame structure. We also examine the dominant reaction flux contributions in each pathway. We compare the results to those in premixed, non-premixed, and opposed-jet triple flames.
International Journal on Numerical Methods in Engineering
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Computational and Theoretical Nanoscience
Abstract not provided.
Scientific Programming
Abstract not provided.
Annual Review of Fluid Mechanics
Abstract not provided.
Abstract not provided.
Comutational Physics
Abstract not provided.
Bayesian statistics provides a foundation for inference from noisy and incomplete data, a natural mechanism for regularization in the form of prior information, and a quantitative assessment of uncertainty in the inferred results. Inverse problems - representing indirect estimation of model parameters, inputs, or structural components - can be fruitfully cast in this framework. Complex and computationally intensive forward models arising in physical applications, however, can render a Bayesian approach prohibitive. This difficulty is compounded by high-dimensional model spaces, as when the unknown is a spatiotemporal field. We present new algorithmic developments for Bayesian inference in this context, showing strong connections with the forward propagation of uncertainty. In particular, we introduce a stochastic spectral formulation that dramatically accelerates the Bayesian solution of inverse problems via rapid evaluation of a surrogate posterior. We also explore dimensionality reduction for the inference of spatiotemporal fields, using truncated spectral representations of Gaussian process priors. These new approaches are demonstrated on scalar transport problems arising in contaminant source inversion and in the inference of inhomogeneous material or transport properties. We also present a Bayesian framework for parameter estimation in stochastic models, where intrinsic stochasticity may be intermingled with observational noise. Evaluation of a likelihood function may not be analytically tractable in these cases, and thus several alternative Markov chain Monte Carlo (MCMC) schemes, operating on the product space of the observations and the parameters, are introduced.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.