Publications

Results 51–75 of 110
Skip to search filters

Imaging the impact of proton irradiation on edge terminations in vertical GaN PIN diodes

IEEE Electron Device Letters

Collins, K.C.; King, M.P.; Dickerson, Jeramy R.; Vizkelethy, Gyorgy V.; Armstrong, Andrew A.; Fischer, Arthur J.; Allerman, A.A.; Kaplar, Robert K.; Aktas, O.; Kizilyalli, I.C.; Talin, A.A.; Léonard, F.

Devices based on GaN have shown great promise for high power electronics, including their potential use as radiation tolerant components. An important step to realizing high power diodes is the design and implementation of an edge termination tomitigate field crowding, which can lead to premature breakdown. However, little is known about the effects of radiation on edge termination functionality. We experimentally examine the effects of proton irradiation on multiple field ring edge terminations in high power vertical GaN PIN diodes using in operando imaging with electron beam induced current (EBIC). We find that exposure to proton irradiation influences field spreading in the edge termination as well as carrier transport near the anode. By using depth-dependent EBIC measurements of hole diffusion length in homoepitaxial n-GaN we demonstrate that the carrier transport effect is due to a reduction in hole diffusion length following proton irradiation.

More Details

Modeling charge collection efficiency degradation in partially depleted GaAs photodiodes using the 1- and 2-carrier Hecht equations

Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms

Auden, E.C.; Vizkelethy, Gyorgy V.; Serkland, Darwin K.; Bossert, David B.; Doyle, Barney L.

The Hecht equation can be used to model the nonlinear degradation of charge collection efficiency (CCE) in response to radiation-induced displacement damage in both fully and partially depleted GaAs photodiodes. CCE degradation is measured for laser-generated photocurrent as a function of fluence and bias in Al0.3Ga0.7As/GaAs/Al0.25Ga0.75As p-i-n photodiodes which have been irradiated with 12 MeV C and 7.5 MeV Si ions. CCE is observed to degrade more rapidly with fluence in partially depleted photodiodes than in fully depleted photodiodes. When the intrinsic GaAs layer is fully depleted, the 2-carrier Hecht equation describes CCE degradation as photogenerated electrons and holes recombine at defect sites created by radiation damage in the depletion region. If the GaAs layer is partially depleted, CCE degradation is more appropriately modeled as the sum of the 2-carrier Hecht equation applied to electrons and holes generated within the depletion region and the 1-carrier Hecht equation applied to minority carriers that diffuse from the field-free (non-depleted) region into the depletion region. Enhanced CCE degradation is attributed to holes that recombine within the field-free region of the partially depleted intrinsic GaAs layer before they can diffuse into the depletion region.

More Details

Transient current induced in thin film diamonds by swift heavy ions

Diamond and Related Materials

Sato, Shin i.; Makino, Takahiro; Ohshima, Takeshi; Kamiya, Tomihiro; Kada, Wataru; Hanaizumi, Osamu; Grilj, Veljko; Skukan, Natko; Pomorski, Michal; Vizkelethy, Gyorgy V.

Single crystal diamond is a suitable material for the next generation particle detectors because of the superior electrical properties and the high radiation tolerance. In order to investigate charge transport properties of diamond particle detectors, transient currents generated in diamonds by single swift heavy ions (26 MeV O5 + and 45 MeV Si7 +) are investigated. Two dimensional maps of transient currents by single ion hits are also measured. In the case of 50 μm-thick diamond, both the signal height and the collected charge are reduced by the subsequent ion hits and the charge collection time is extended. These results are thought to be attributable to the polarization effect in diamond and it appears only when the transient current is dominated by hole current. In the case of 6 μm-thick diamond membrane, an “island” structure is found in the 2D map of transient currents. Signals in the islands shows different applied bias dependence from signals in other regions, indicating different crystal and/or metal contact quality. Simulation study of transient currents based on the Shockley-Ramo theorem clarifies that accumulation of space charges changes distribution of electric field in diamond and causes the polarization effect.

More Details

Comparison of Gain Degradation and Deep Level Transient Spectroscopy in pnp Si Bipolar Junction Transistors Irradiated With Different Ion Species

IEEE Transactions on Nuclear Science

Aguirre, Brandon A.; Bielejec, E.; Fleming, R.M.; Vizkelethy, Gyorgy V.; Vaandrager, B.; Campbell, Jonathan C.; Martin, W.J.; King, D.B.

We studied the effect of light ion and heavy ion irradiations on pnp Si BJTs. A mismatch in DLTS deep peak amplitude for devices with same final gain but irradiated with different ion species was observed. Also, different ions cause different gain degradation when the DLTS spectra are matched. Pre-dosed ion-irradiated samples show that ion induced ionization does not account for the differences in DLTS peak height but isochronal annealing studies suggest that light ions produce more VP defects than heavy ions to compensate for the lack of clusters that heavy ions produce. The creation of defect clusters by heavy ions is evident by the higher content of E4 and V2∗ defects compared to light ions.

More Details

The anatomy of the minority carrier - atomic cluster interaction in semiconductors

Doyle, Barney L.; Auden, Elizabeth C.; Bielejec, Edward S.; Abraham, John B.; Vizkelethy, Gyorgy V.

This project was to use light ion beam induced charge (IBIC) to detect damage cascades generated by a single heavy ion, and thereby reveal details of the shape of the cascade and the physics of recombination of carriers that interact with the cluster. Further IBIC measurements using the hardware and software of this project will improve the accuracy of theoretical models used to predict electrical degradation in devices exposed to radiation environments. In addition, future use of light ion IBIC detection of single ion-induced damage could be used to locate single ion implantation sites in quantum computing applications. This project used Sandia's Pelletron and nanoImplanter (nI) to produce heavy ion-induced collision cascades in p-n diodes, simulating cascades made by primary knock-on atoms recoiled by neutrons. Si and Li beams from the nI were used to perform highly focused scans generating IBIC signal maps where regions of lower charge collection efficiency were observed without incurring further damage. The very first use of ion channeled beams for IBIC was explored to maximize ionization, improve contrast and provide very straight line trajectories to improve lateral resolution.

More Details

Fabrication and characterization of a co-planar detector in diamond for low energy single ion implantation

Applied Physics Letters

Abraham, John B.; Aguirre, Brandon A.; Pacheco, Jose L.; Vizkelethy, Gyorgy V.; Bielejec, E.

We demonstrate low energy single ion detection using a co-planar detector fabricated on a diamond substrate and characterized by ion beam induced charge collection. Histograms are taken with low fluence ion pulses illustrating quantized ion detection down to a single ion with a signal-to-noise ratio of approximately 10. We anticipate that this detection technique can serve as a basis to optimize the yield of single color centers in diamond. The ability to count ions into a diamond substrate is expected to reduce the uncertainty in the yield of color center formation by removing Poisson statistics from the implantation process.

More Details

Charge collection efficiency degradation induced by MeV ions in semiconductor devices: Model and experiment

Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms

Vittone, E.; Pastuovic, Z.; Breese, M.B.H.; Garcia Lopez, J.; Jaksic, M.; Raisanen, J.; Siegele, R.; Simon, A.; Vizkelethy, Gyorgy V.

This paper investigates both theoretically and experimentally the charge collection efficiency (CCE) degradation in silicon diodes induced by energetic ions. Ion Beam Induced Charge (IBIC) measurements carried out on n- and p-type silicon diodes which were previously irradiated with MeV He ions show evidence that the CCE degradation does not only depend on the mass, energy and fluence of the damaging ion, but also depends on the ion probe species and on the polarization state of the device. A general one-dimensional model is derived, which accounts for the ion-induced defect distribution, the ionization profile of the probing ion and the charge induction mechanism. Using the ionizing and non-ionizing energy loss profiles resulting from simulations based on the binary collision approximation and on the electrostatic/transport parameters of the diode under study as input, the model is able to accurately reproduce the experimental CCE degradation curves without introducing any phenomenological additional term or formula. Although limited to low level of damage, the model is quite general, including the displacement damage approach as a special case and can be applied to any semiconductor device. It provides a method to measure the capture coefficients of the radiation induced recombination centres. They can be considered indexes, which can contribute to assessing the relative radiation hardness of semiconductor materials.

More Details

Determination of recombination radius in Si for binary collision approximation codes

Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms

Vizkelethy, Gyorgy V.; Foiles, Stephen M.

Displacement damage caused by ions or neutrons in microelectronic devices can have significant effect on the performance of these devices. Therefore, it is important to predict not only the displacement damage profile, but also its magnitude precisely. Analytical methods and binary collision approximation codes working with amorphous targets use the concept of displacement energy, the energy that a lattice atom has to receive to create a permanent replacement. It was found that this "displacement energy" is direction dependent; it can range from 12 to 32 eV in silicon. Obviously, this model fails in BCA codes that work with crystalline targets, such as Marlowe. Marlowe does not use displacement energy; instead, it uses lattice binding energy only and then pairs the interstitial atoms with vacancies. Then based on the configuration of the Frenkel pairs it classifies them as close, near, or distant pairs, and considers the distant pairs the permanent replacements. Unfortunately, this separation is an ad hoc assumption, and the results do not agree with molecular dynamics calculations. After irradiation, there is a prompt recombination of interstitials and vacancies if they are nearby, within a recombination radius. In order to implement this recombination radius in Marlowe, we used the comparison of MD and Marlowe calculation in a range of ion energies in single crystal silicon target. The calculations showed that a single recombination radius of ∼7.4 Å in Marlowe for a range of ion energies gives an excellent agreement with MD.

More Details

Sub-Micron Resolution of Localized Ion Beam Induced Charge Reduction in Silicon Detectors Damaged by Heavy Ions

IEEE Transactions on Nuclear Science

Auden, Elizabeth C.; Pacheco, Jose L.; Bielejec, Edward S.; Vizkelethy, Gyorgy V.; Abraham, John B.; Doyle, Barney L.

Displacement damage reduces ion beam induced charge (IBIC) through Shockley-Read-Hall recombination. Closely spaced pulses of 200 keVions focused in a 40 nm beam spot are used to create damage cascades within areas. Damaged areas are detected through contrast in IBIC signals generated with focused ion beams of {200 ions and 60 keV ions. IBIC signal reduction can be resolved over sub-micron regions of a silicon detector damaged by as few as 1000 heavy ions.

More Details

Performance and Breakdown Characteristics of Irradiated Vertical Power GaN P-i-N Diodes

IEEE Transactions on Nuclear Science

King, M.P.; Armstrong, Andrew A.; Dickerson, Jeramy R.; Vizkelethy, Gyorgy V.; Fleming, Robert M.; Campbell, Jonathan C.; Wampler, W.R.; Kizilyalli, I.C.; Bour, D.P.; Aktas, O.; Nie, H.; DIsney, D.; Wierer, J.; Allerman, A.A.; Moseley, M.W.; Leonard, F.; Talin, A.A.; Kaplar, Robert K.

Electrical performance and defect characterization of vertical GaN P-i-N diodes before and after irradiation with 2.5 MeV protons and neutrons is investigated. Devices exhibit increase in specific on-resistance following irradiation with protons and neutrons, indicating displacement damage introduces defects into the p-GaN and n- drift regions of the device that impact on-state device performance. The breakdown voltage of these devices, initially above 1700 V, is observed to decrease only slightly for particle fluence < {10{13}} hbox{cm}-2. The unipolar figure of merit for power devices indicates that while the on-resistance and breakdown voltage degrade with irradiation, vertical GaN P-i-Ns remain superior to the performance of the best available, unirradiated silicon devices and on-par with unirradiated modern SiC-based power devices.

More Details
Results 51–75 of 110
Results 51–75 of 110