Energy Efficient Neuromorphic Algorithm Training with Analog Memory Arrays
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
IEEE Transactions on Nuclear Science
The image classification accuracy of a TaOx ReRAM-based neuromorphic computing accelerator is evaluated after intentionally inducing a displacement damage up to a fluence of 1014 2.5-MeV Si ions/cm2 on the analog devices that are used to store weights. Results are consistent with a radiation-induced oxygen vacancy production mechanism. When the device is in the high-resistance state during heavy ion radiation, the device resistance, linearity, and accuracy after training are only affected by high fluence levels. The findings in this paper are in accordance with the results of previous studies on TaOx-based digital resistive random access memory. When the device is in the low-resistance state during irradiation, no resistance change was detected, but devices with a 4-kΩ inline resistor did show a reduction in accuracy after training at 1014 2.5-MeV Si ions/cm2. This indicates that changes in resistance can only be somewhat correlated with changes to devices' analog properties. This paper demonstrates that TaOx devices are radiation tolerant not only for high radiation environment digital memory applications but also when operated in an analog mode suitable for neuromorphic computation and training on new data sets.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
This report is a follow-up to the previous report on the difference between high fluence, high and low flux irradiations. There was a discrepancy in the data for the LBNL irradiated S5821 PIN diodes. There were diodes irradiated in the two batches (high and low flux) with the same flux and fluence for reference (lell ions/cm2/shot and 5, 10, and 20 ions/cm2 total flux). Although these diodes should have the same electrical characteristics their leakage currents were different by a factor of 5-6 (batch 2 was larger). Also, the C-V measurements showed drastically different results. It was speculated that these discrepancies were due to one of the following two reasons: 1. Different times elapsed between radiation and characterization. 2. Different areas were irradiated (roughly half of the diodes were covered during irradiation). To address the first concern, we annealed the devices according to the ASTM standard [1]. The differences remained the same. To determine the irradiated area, we performed large area IBIC scans on several devices. Error! Reference source not found. below shows the IBIC maps of two devices one from each batch. The irradiated areas are approximately the same.
Abstract not provided.
Abstract not provided.
Abstract not provided.
IEEE Transactions on Nuclear Science
As device dimensions decrease, single displacement effects become more important. We measured the gain degradation in III-V heterojunction bipolar transistors due to single particles using a heavy ion microbeam. Two devices with different sizes were irradiated with various ion species ranging from oxygen to gold to study the effect of the irradiation ion mass on gain change. From the single steps in the inverse gain (which is proportional to the number of defects), we calculated cumulative distribution functions to help determine design margins. The displacement process was modeled using the MARLOWE binary collision approximation code. The entire structure of the device was modeled and the defects in the base-emitter junction were counted to be compared with the experimental results. While we found good agreement for the large device, we had to modify our model to reach reasonable agreement for the small device.
Abstract not provided.
lon accelerator based techniques provide unique tools to gain insight into the phenomena underlying the formation of defects induced by energetic particles in semiconductor materials and their effects on the electronic features of the device. In recognition of the potential of these techniques, with the aim of enhancing the understanding of the mechanisms underlying the degradation of the performances of semiconductor devices induced by ionizing radiation, the IAEA established a Research Project, coordinated by the Physics Section (CRP F11016) entitled "Utilization of ion accelerators for studying and modelling of radiation induced defects in semiconductors and insulators" at the end of 2011. The objective of this IAEA Coordinated Research Project (CRP) was to enhance the capabilities of the interested Member States by facilitating their collective efforts to use accelerator-based ion irradiation of electronic materials in conjunction with available advanced characterization techniques to gain a deeper understanding of how different types of radiation influences the electronic properties of materials and devices, leading to an improved radiation hardness. A dynamic and productive research was stimulated by this CRP among collaborating partners, resulting in publications in scientific journals [CRP2016], educational and scientific software packages [W8, Forneris2014], and a number of collaborations among the participating research groups. Two of the most significant outcomes of this project are i) the experimental protocol, which rationalizes the use of the many existing characterization techniques adopted to investigate radiation effects in semiconductor devices and ii) the relevant theoretical approach to interpret the experimental data [Vittone2016 and references therein]. This publication integrates output of research articles published by the partners of the CRP and is aimed to provide an exhaustive description of the experimental protocol, the theoretical model with the relevant limits of application, the data analysis procedure, and the physical observables which can be effectively measured and which can be used for assessment of the radiation hardness of semiconductor devices. The intended audience of this report includes all those professionals and technologists working in ion beam functional analysis of semiconductor materials, solid-state physicists and engineers involved in the design of electronic devices working in radiation harsh environments.
Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms
Radiation responses of high-voltage, vertical gallium-nitride (GaN) diodes were investigated using Sandia National Laboratories’ nuclear microprobe. Effects of the ionization and the displacement damage were studied using various ion beams. We found that the devices show avalanche effect for heavy ions operated under bias well below the breakdown voltage. The displacement damage experiments showed a surprising effect for moderate damage: the charge collection efficiency demonstrated an increase instead of a decrease for higher bias voltages.
Abstract not provided.