Final Report for LDRD Project: HPM Vulnerability Assessment and Tests
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
This report provides a summary of the LDRD project titled: An Electromagnetic Imaging System for Environmental Site Reconnaissance. The major initial challenge of this LDRD was to develop a ground penetrating radar (GPR) whose peak and average radiated power surpassed that of any other in existence. Goals were set to use such a system to detect the following: (1) disrupted soil layers where there is potential for buried waste, (2) buried objects such as 55-gallon drums at depths up to 3 m, and (3) detecting contaminated soil. Initial modeling of the problem suggested that for soil conditions similar to Puerto Rican clay loam, moisture content 10 percent (conductivity = 0.01 mhos at 350 MHz), a buried 55-gallon drum could be detected in a straightforward manner by an UWB GPR system at a depth of 3 meters. From the simulations, the highest attenuation ({minus}50 dB) was the result of scattering from a 3-m deep vertically orientated drum. A system loss of {minus}100 dB is a typical limit for all kinds of radar systems (either direct time-domain or swept frequency). The modeling work also determined that the waveshape of the pulse scattered off the buried drum would be relatively insensitive to drum orientation, and thus easier to detect with the GPR system.
A new type of GaAs laser is based on the electron-hole plasma in a current filament and is not limited in size by p-n junctions. High energy, electrically controlled, compact, short-pulse lasers are useful for: active optical sensors (LADAR, range imaging, imaging through clouds, dust, smoke, or turbid water), direct optical ignition of fuels and explosives, optical recording, and micro-machining. The authors present a new class of semiconductor laser that can potentially produce much more short pulse energy than conventional (injection-pumped) semiconductor lasers (CSL) because this new laser is not limited in volume or aspect ratio by the depth of a p-n junction. They have tested current filament semiconductor lasers (CFSL) that have produced 75nJ of 890nm radiation in 1.5ns (50W peak), approximately ten times more energy than ISL. These lasers are created from current filaments in semi-insulating GaAs and, in contrast to CSL, are not based on current injection. Instead, low-field avalanche carrier generation produces a high-density, charge-neutral plasma channel with the required carrier density distribution for lasing. They have observed filaments as long as 3.4cm and several hundred microns in diameter in the high gain GaAs photoconductive switches. Their smallest dimension can be more than 100 times the carrier diffusion length in GaAs. This paper will report spectral narrowing, lasing thresholds, beam divergence, temporal narrowing, and energies which imply lasing for several configurations of CFSL. It will also discuss active volume scaling based on recent high current tests.
The electrical properties of semi-insulating (SI) Gallium Arsenide (GaAs) have been investigated for some time, particularly for its application as a substrate in microelectronics. Of late this material has found a variety of applications other than as an isolation region between devices, or the substrate of an active device. High resistivity SI GaAs is increasingly being used in charged particle detectors and photoconductive semiconductor switches (PCSS). PCSS made from these materials operating in both the linear and non-linear modes have applications such as firing sets, as drivers for lasers, and in high impedance, low current Q-switches or Pockels cells. In the non-linear mode, it has also been used in a system to generate Ultra-Wideband (UWB) High Power Microwaves (HPM). The choice of GaAs over silicon offers the advantage that its material properties allow for fast, repetitive switching action. Furthermore photoconductive switches have advantages over conventional switches such as improved jitter, better impedance matching, compact size, and in some cases, lower laser energy requirement for switching action. The rise time of the PCSS is an important parameter that affects the maximum energy transferred to the load and it depends, in addition to other parameters, on the bias or the average field across the switch. High field operation has been an important goal in PCSS research. Due to surface flashover or premature material breakdown at higher voltages, most PCSS, especially those used in high power operation, need to operate well below the inherent breakdown voltage of the material. The lifetime or the total number of switching operations before breakdown, is another important switch parameter that needs to be considered for operation at high bias conditions. A lifetime of {approximately} 10{sup 4} shots has been reported for PCSS's used in UWB-HPM generation [5], while it has exceeded 10{sup 8} shots for electro-optic drivers. Much effort is currently being channeled in the study related to improvements of these two parameters high bias operation and lifetime improvement for switches used in pulsed power applications. The contact material and profiles are another important area of study. Although these problems are being pursued through the incorporation of different contact materials and introducing doping near contacts, it is important that the switch properties and the conduction mechanism in these switches be well understood such that the basic nature of the problems can be properly addressed. In this paper the authors report on these two basic issues related to the device operation, i.e., mechanisms for increasing the hold-off characteristics through neutron irradiation, and the analysis of transport processes at varying field conditions in trap dominated SI GaAs in order to identify the breakdown mechanism during device operation. It is expected that this study would result in a better understanding of photoconductive switches, specifically those used in high power operation.
This paper reports on a recent comparison made between the Air Force Research Laboratory (AFRL) gallium arsenide, optically-triggered switch test configuration and the Sandia National Laboratories (SNL) gallium arsenide, optically-triggered switch test configuration. The purpose of these measurements was to compare the temporal switch jitter times. It is found that the optical trigger laser characteristics are dominant in determining the PCSS jitter.
The longevity of high gain GaAs photoconductive semiconductor switches (PCSS) has been extended to over 100 million pulses at 23A, and over 100 pulses at 1kA. This is achieved by improving the ohmic contacts by doping the semi-insulating GaAs underneath the metal, and by achieving a more uniform distribution of contact wear across the entire switch by distributing the trigger light to form multiple filaments. This paper will compare various approaches to doping the contacts, including ion implantation, thermal diffusion, and epitaxial growth. The device characterization also includes examination of the filament behavior using open-shutter, infra-red imaging during high gain switching. These techniques provide information on the filament carrier densities as well as the influence that the different contact structures and trigger light distributions have on the distribution of the current in the devices. This information is guiding the continuing refinement of contact structures and geometries for further improvements in switch longevity.
IEEE Conference Record of Power Modulator Symposium
The longevity of high gain GaAs photoconductive semiconductor switches (PCSS) has been extended to over 100 million pulses. This was achieved by improving the ohmic contacts through the incorporation of a doped layer that is very effective in the suppression of filament formation, alleviating current crowding. Damage-free operation is now possible at much higher current levels than before. The inherent damage-free current capacity of the bulk GaAs itself depends on the thickness of the doped layers and is at least 100 A for a dopant diffusion depth of 4 μm. This current could be increased by connecting and triggering parallel switches. The contact metal has a different damage mechanism and the threshold for damage (approximately 40 A) is not further improved beyond a dopant diffusion depth of about 2 μm. In a diffusion-doped contact switch, the switching performance is not degraded at the onset of contact metal erosion, unlike a switch with conventional contacts. For fireset applications operating at 1 kV/1 kA levels and higher, doped contacts have not yet resulted in improved longevity. We employ multi-filament operation and InPb solder/Au ribbon wirebonding to demonstrate >100 shot lifetime at 1 kV/1 kA.