Publications

Results 51–75 of 97
Skip to search filters

Feedback in close-coupled axial VCSEL-photodiode pairs

Proceedings of SPIE - The International Society for Optical Engineering

Geib, Kent M.; Serkland, Darwin K.; Peake, Gregory M.; Sanchez, Victoria M.

We have been investigating the use of coaxial multimode VCSEL/PD (vertical cavity surface emitting laser/photodiode) pairs for positional sensing with emitter to target mirror distances on the order of 1mm. We have observed large variations in signal levels due to the strong optical feedback in these close-coupled systems, employing either heterogeneously integrated commercial components or our own monolithically integrated devices. The feedback effect is larger than anticipated due to the annular geometry of the photodetector. Even though there is very little change in the measured VCSEL total output power, the optical feedback induces variations in the transverse mode distributions in these multimode VCSELs. The higher order modes have a larger divergence angle resulting in changes in the reflected light power incident upon the active detector area for a large range of emitter/mirror separations. We will review the experimental details and provide strategies for avoiding these variations in detected power. © 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).

More Details

Cascaded double ring resonator filter with integrated SOAs

2011 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, OFC/NFOEC 2011

Tauke-Pedretti, Anna; Vawter, Gregory A.; Skogen, Erik J.; Peake, Gregory M.; Overberg, Mark E.; Alford, Charles A.; Torres, David; Cajas, Florante; Kalivoda, James

We present a filter consisting of cascaded ring resonators with integrated SOAs. The filter demonstrates an extinction ratio ≥30 dB, a free spectral range of 56 GHz and a FWHM bandwidth of 3 GHz. © 2011 Optical Society of America.

More Details

Optical logic gates using interconnected photodiodes and electro-absorption modulators

Optics InfoBase Conference Papers

Skogen, Erik J.; Vawter, Gregory A.; Tauke-Pedretti, Anna; Overberg, Mark E.; Peake, Gregory M.; Alford, Charles; Torres, David; Cajas, Florante; Sullivan, Charles T.

We demonstrate an optical gate architecture with optical isolation between input and output using interconnected PD-EAMs to perform AND and NOT functions. Waveforms for 10 Gbps AND and 40 Gbps NOT gates are shown. © 2010 Optical Society of America.

More Details

Enhanced frequency response in monolithically integrated coupled cavity lasers and electro-absorption modulator

Vawter, Gregory A.; Wendt, J.R.; Alford, Charles A.; Skogen, Erik J.; Overberg, Mark E.; Peake, Gregory M.; Chow, Weng W.; Yang, Zhenshan Y.

We present the bandwidth enhancement of an EAM monolithically integrated with two mutually injection-locked lasers. An improvement in the modulation efficiency and bandwidth are shown with mutual injection locking.

More Details

Injection-locked composite lasers for mm-wave modulation : LDRD 117819 final report

Vawter, Gregory A.; Skogen, Erik J.; Chow, Weng W.; Overberg, Mark E.; Peake, Gregory M.; Wendt, J.R.

This report summarizes a 3-year LDRD program at Sandia National Laboratories exploring mutual injection locking of composite-cavity lasers for enhanced modulation responses. The program focused on developing a fundamental understanding of the frequency enhancement previously demonstrated for optically injection locked lasers. This was then applied to the development of a theoretical description of strongly coupled laser microsystems. This understanding was validated experimentally with a novel 'photonic lab bench on a chip'.

More Details

Microfabricated wire arrays for Z-pinch

Cich, Michael C.; Klem, John F.; Spahn, Olga B.; Peake, Gregory M.; Rowen, Adam M.; Nash, Thomas J.

Microfabrication methods have been applied to the fabrication of wire arrays suitable for use in Z. Self-curling GaAs/AlGaAs supports were fabricated as an initial route to make small wire arrays (4mm diameter). A strain relief structure that could be integrated with the wire was designed to allow displacements of the anode/cathode connections in Z. Electroplated gold wire arrays with integrated anode/cathode bus connections were found to be sufficiently robust to allow direct handling. Platinum and copper plating processes were also investigated. A process to fabricate wire arrays on any substrate with wire thickness up to 35 microns was developed. Methods to handle and mount these arrays were developed. Fabrication of wire arrays of 20mm diameter was demonstrated, and the path to 40mm array fabrication is clear. With some final investment to show array mounting into Z hardware, the entire process to produce a microfabricated wire array will have been demonstrated.

More Details

Final report on LDRD project : advanced optical trigger systems

Serkland, Darwin K.; Mar, Alan M.; Geib, K.M.; Peake, Gregory M.; Roose, Lars D.; Keeler, Gordon A.; Hadley, G.R.; Loubriel, Guillermo M.; Sullivan, Charles T.

Advanced optically-activated solid-state electrical switch development at Sandia has demonstrated multi-kA/kV switching and the path for scalability to even higher current/power. Realization of this potential requires development of new optical sources/switches based on key Sandia photonic device technologies: vertical-cavity surface-emitting lasers (VCSELs) and photoconductive semiconductor switch (PCSS) devices. The key to increasing the switching capacity of PCSS devices to 5kV/5kA and higher is to distribute the current in multiple parallel line filaments triggered by an array of high-brightness line-shaped illuminators. Commercial mechanically-stacked edge-emitting lasers have been used to trigger multiple filaments, but they are difficult to scale and manufacture with the required uniformity. In VCSEL arrays, adjacent lasers utilize identical semiconductor material and are lithographically patterned to the required dimensions. We have demonstrated multiple-line filament triggering using VCSEL arrays to approximate line generation. These arrays of uncoupled circular-aperture VCSELs have fill factors ranging from 2% to 30%. Using these arrays, we have developed a better understanding of the illumination requirements for stable triggering of multiple-filament PCSS devices. Photoconductive semiconductor switch (PCSS) devices offer advantages of high voltage operation (multi-kV), optical isolation, triggering with laser pulses that cannot occur accidentally in nature, low cost, high speed, small size, and radiation hardness. PCSS devices are candidates for an assortment of potential applications that require multi-kA switching of current. The key to increasing the switching capacity of PCSS devices to 5kV/5kA and higher is to distribute the current in multiple parallel line filaments triggered by an array of high-brightness line-shaped illuminators. Commercial mechanically-stacked edge-emitting lasers have been demonstrated to trigger multiple filaments, but they are difficult to scale and manufacture with the required uniformity. As a promising alternative to multiple discrete edge-emitting lasers, a single wafer of vertical-cavity surface-emitting lasers (VCSELs) can be lithographically patterned to achieve the desired layout of parallel line-shaped emitters, in which adjacent lasers utilize identical semiconductor material and thereby achieve a degree of intrinsic optical uniformity. Under this LDRD project, we have fabricated arrays of uncoupled circular-aperture VCSELs to approximate a line-shaped illumination pattern, achieving optical fill factors ranging from 2% to 30%. We have applied these VCSEL arrays to demonstrate single and dual parallel line-filament triggering of PCSS devices. Moreover, we have developed a better understanding of the illumination requirements for stable triggering of multiple-filament PCSS devices using VCSEL arrays. We have found that reliable triggering of multiple filaments requires matching of the turn-on time of adjacent VCSEL line-shaped-arrays to within approximately 1 ns. Additionally, we discovered that reliable triggering of PCSS devices at low voltages requires more optical power than we obtained with our first generation of VCSEL arrays. A second generation of higher-power VCSEL arrays was designed and fabricated at the end of this LDRD project, and testing with PCSS devices is currently underway (as of September 2008).

More Details

Final report on LDRD project 105967 : exploring the increase in GaAs photodiode responsivity with increased neutron fluence

Blansett, Ethan B.; Serkland, Darwin K.; Geib, K.M.; Peake, Gregory M.; Fleming, Robert M.; Wrobel, Diana L.

A previous LDRD studying radiation hardened optoelectronic components for space-based applications led to the result that increased neutron irradiation from a fast-burst reactor caused increased responsivity in GaAs photodiodes up to a total fluence of 4.4 x 10{sup 13} neutrons/cm{sup 2} (1 MeV Eq., Si). The silicon photodiodes experienced significant degradation. Scientific literature shows that neutrons can both cause defects as well as potentially remove defects in an annealing-like process in GaAs. Though there has been some modeling that suggests how fabrication and radiation-induced defects can migrate to surfaces and interfaces in GaAs and lead to an ordering effect, it is important to consider how these processes affect the performance of devices, such as the basic GaAs p-i-n photodiode. In this LDRD, we manufactured GaAs photodiodes at the MESA facility, irradiated them with electrons and neutrons at the White Sands Missile Range Linac and Fast Burst Reactor, and performed measurements to show the effect of irradiation on dark current, responsivity and high-speed bandwidth.

More Details

The chip-scale atomic clock : prototype evaluation

Serkland, Darwin K.; Geib, K.M.; Peake, Gregory M.

The authors have developed a chip-scale atomic clock (CSAC) for applications requiring atomic timing accuracy in portable battery-powered applications. At PTTI/FCS 2005, they reported on the demonstration of a prototype CSAC, with an overall size of 10 cm{sup 3}, power consumption > 150 mW, and short-term stability sy(t) < 1 x 10-9t-1/2. Since that report, they have completed the development of the CSAC, including provision for autonomous lock acquisition and a calibrated output at 10.0 MHz, in addition to modifications to the physics package and system architecture to improve performance and manufacturability.

More Details

VCSEL polarization control for chip-scale atomic clocks

Keeler, Gordon A.; Geib, K.M.; Serkland, Darwin K.; Peake, Gregory M.; Wendt, J.R.

Sandia National Laboratories and Mytek, LLC have collaborated to develop a monolithically-integrated vertical-cavity surface-emitting laser (VCSEL) assembly with controllable polarization states suitable for use in chip-scale atomic clocks. During the course of this work, a robust technique to provide polarization control was modeled and demonstrated. The technique uses deeply-etched surface gratings oriented at several different rotational angles to provide VCSEL polarization stability. A rigorous coupled-wave analysis (RCWA) model was used to optimize the design for high polarization selectivity and fabrication tolerance. The new approach to VCSEL polarization control may be useful in a number of defense and commercial applications, including chip-scale atomic clocks and other low-power atomic sensors.

More Details

Control of VCSEL polarization using deeply etched surface gratings

Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference, CLEO/QELS 2006

Keeler, Gordon A.; Geib, K.M.; Serkland, Darwin K.; Peake, Gregory M.; Wendt, J.R.

We demonstrate a robust approach to VCSEL polarization control using deeply-etched surface gratings oriented at several different rotational angles. A RCWA model is used to optimize the design for high polarization selectivity and fabrication tolerance. © 2006 Optical Society of America.

More Details

In-situ optical time-domain reflectometry (OTDR) for VCSEL-based communication systems

Proceedings of SPIE - The International Society for Optical Engineering

Keeler, Gordon A.; Serkland, Darwin K.; Geib, K.M.; Klem, John F.; Peake, Gregory M.

Optical lime-domain reflectometry (OTDR) is an effeclive technique for locating faults in fiber communication links. The fact that most OTDR measurements are performed manually is a significant drawback, because it makes them too costly for use in many short-distance networks and too slow for use in military avionic platforms. Here we describe and demonstrate an automated, low-cost, real-time approach to fault monitoring that can be achieved by integrating OTDR functionality directly into VCSEL-based transceivers. This built-in test capability is straightforward to implement and relevant to both multimode and single mode networks. In-situ OTDR uses the transmitter VCSEL already present in data transceivers. Fault monitoring is performed by emitting a brief optical pulse into the fiber and then turning the VCSEL off. If a fault exists, a portion of the optical pulse returns to the transceiver after a time equal to the round-trip delay through the fiber. In multimode OTDR, the signal is detected by an integrated photodetector, while in single mode OTDR the VCSEL itself can be used as a detector. Modified driver electronics perform the measurement and analysis. We demonstrate that VCSEL-based OTDR has sufficient sensitivity to determine the location of most faults commonly seen in short-haul networks (i.e., the Fresnel reflections from improperly terminated fibers and scattering from raggedly-broken fibers). Results are described for single mode and multimode experiments, at both 850 nm and 1.3 μm. We discuss the resolution and sensitivity that have been achieved, as well as expected limitations for this novel approach to network monitoring.

More Details
Results 51–75 of 97
Results 51–75 of 97