We present the bandwidth enhancement of an EAM monolithically integrated with two mutually injection-locked lasers. An improvement in the modulation efficiency and bandwidth are shown with mutual injection locking.
We present a photonic integrated circuit (PIC) composed of two strongly coupled lasers. This PIC utilizes the dynamics of mutual injection locking to increase the relaxation resonance frequency from 3 GHz to beyond 30 GHz.
This report summarizes a 3-year LDRD program at Sandia National Laboratories exploring mutual injection locking of composite-cavity lasers for enhanced modulation responses. The program focused on developing a fundamental understanding of the frequency enhancement previously demonstrated for optically injection locked lasers. This was then applied to the development of a theoretical description of strongly coupled laser microsystems. This understanding was validated experimentally with a novel 'photonic lab bench on a chip'.
We present the bandwidth enhancement of an EAM monolithically integrated with two mutually injection-locked lasers. An improvement in the modulation efficiency and bandwidth are shown with mutual injection locking.
We demonstrate an optical gate architecture using electro-absorption modulator/photodiode pairs to perform AND and NOT functions. Optical bandwidth for both gates reach 40 GHz. Also shown are AND gate waveforms at 40 Gbps.
Microfabrication methods have been applied to the fabrication of wire arrays suitable for use in Z. Self-curling GaAs/AlGaAs supports were fabricated as an initial route to make small wire arrays (4mm diameter). A strain relief structure that could be integrated with the wire was designed to allow displacements of the anode/cathode connections in Z. Electroplated gold wire arrays with integrated anode/cathode bus connections were found to be sufficiently robust to allow direct handling. Platinum and copper plating processes were also investigated. A process to fabricate wire arrays on any substrate with wire thickness up to 35 microns was developed. Methods to handle and mount these arrays were developed. Fabrication of wire arrays of 20mm diameter was demonstrated, and the path to 40mm array fabrication is clear. With some final investment to show array mounting into Z hardware, the entire process to produce a microfabricated wire array will have been demonstrated.
Advanced optically-activated solid-state electrical switch development at Sandia has demonstrated multi-kA/kV switching and the path for scalability to even higher current/power. Realization of this potential requires development of new optical sources/switches based on key Sandia photonic device technologies: vertical-cavity surface-emitting lasers (VCSELs) and photoconductive semiconductor switch (PCSS) devices. The key to increasing the switching capacity of PCSS devices to 5kV/5kA and higher is to distribute the current in multiple parallel line filaments triggered by an array of high-brightness line-shaped illuminators. Commercial mechanically-stacked edge-emitting lasers have been used to trigger multiple filaments, but they are difficult to scale and manufacture with the required uniformity. In VCSEL arrays, adjacent lasers utilize identical semiconductor material and are lithographically patterned to the required dimensions. We have demonstrated multiple-line filament triggering using VCSEL arrays to approximate line generation. These arrays of uncoupled circular-aperture VCSELs have fill factors ranging from 2% to 30%. Using these arrays, we have developed a better understanding of the illumination requirements for stable triggering of multiple-filament PCSS devices. Photoconductive semiconductor switch (PCSS) devices offer advantages of high voltage operation (multi-kV), optical isolation, triggering with laser pulses that cannot occur accidentally in nature, low cost, high speed, small size, and radiation hardness. PCSS devices are candidates for an assortment of potential applications that require multi-kA switching of current. The key to increasing the switching capacity of PCSS devices to 5kV/5kA and higher is to distribute the current in multiple parallel line filaments triggered by an array of high-brightness line-shaped illuminators. Commercial mechanically-stacked edge-emitting lasers have been demonstrated to trigger multiple filaments, but they are difficult to scale and manufacture with the required uniformity. As a promising alternative to multiple discrete edge-emitting lasers, a single wafer of vertical-cavity surface-emitting lasers (VCSELs) can be lithographically patterned to achieve the desired layout of parallel line-shaped emitters, in which adjacent lasers utilize identical semiconductor material and thereby achieve a degree of intrinsic optical uniformity. Under this LDRD project, we have fabricated arrays of uncoupled circular-aperture VCSELs to approximate a line-shaped illumination pattern, achieving optical fill factors ranging from 2% to 30%. We have applied these VCSEL arrays to demonstrate single and dual parallel line-filament triggering of PCSS devices. Moreover, we have developed a better understanding of the illumination requirements for stable triggering of multiple-filament PCSS devices using VCSEL arrays. We have found that reliable triggering of multiple filaments requires matching of the turn-on time of adjacent VCSEL line-shaped-arrays to within approximately 1 ns. Additionally, we discovered that reliable triggering of PCSS devices at low voltages requires more optical power than we obtained with our first generation of VCSEL arrays. A second generation of higher-power VCSEL arrays was designed and fabricated at the end of this LDRD project, and testing with PCSS devices is currently underway (as of September 2008).
A previous LDRD studying radiation hardened optoelectronic components for space-based applications led to the result that increased neutron irradiation from a fast-burst reactor caused increased responsivity in GaAs photodiodes up to a total fluence of 4.4 x 10{sup 13} neutrons/cm{sup 2} (1 MeV Eq., Si). The silicon photodiodes experienced significant degradation. Scientific literature shows that neutrons can both cause defects as well as potentially remove defects in an annealing-like process in GaAs. Though there has been some modeling that suggests how fabrication and radiation-induced defects can migrate to surfaces and interfaces in GaAs and lead to an ordering effect, it is important to consider how these processes affect the performance of devices, such as the basic GaAs p-i-n photodiode. In this LDRD, we manufactured GaAs photodiodes at the MESA facility, irradiated them with electrons and neutrons at the White Sands Missile Range Linac and Fast Burst Reactor, and performed measurements to show the effect of irradiation on dark current, responsivity and high-speed bandwidth.
The authors have developed a chip-scale atomic clock (CSAC) for applications requiring atomic timing accuracy in portable battery-powered applications. At PTTI/FCS 2005, they reported on the demonstration of a prototype CSAC, with an overall size of 10 cm{sup 3}, power consumption > 150 mW, and short-term stability sy(t) < 1 x 10-9t-1/2. Since that report, they have completed the development of the CSAC, including provision for autonomous lock acquisition and a calibrated output at 10.0 MHz, in addition to modifications to the physics package and system architecture to improve performance and manufacturability.
Sandia National Laboratories and Mytek, LLC have collaborated to develop a monolithically-integrated vertical-cavity surface-emitting laser (VCSEL) assembly with controllable polarization states suitable for use in chip-scale atomic clocks. During the course of this work, a robust technique to provide polarization control was modeled and demonstrated. The technique uses deeply-etched surface gratings oriented at several different rotational angles to provide VCSEL polarization stability. A rigorous coupled-wave analysis (RCWA) model was used to optimize the design for high polarization selectivity and fabrication tolerance. The new approach to VCSEL polarization control may be useful in a number of defense and commercial applications, including chip-scale atomic clocks and other low-power atomic sensors.
Optical lime-domain reflectometry (OTDR) is an effeclive technique for locating faults in fiber communication links. The fact that most OTDR measurements are performed manually is a significant drawback, because it makes them too costly for use in many short-distance networks and too slow for use in military avionic platforms. Here we describe and demonstrate an automated, low-cost, real-time approach to fault monitoring that can be achieved by integrating OTDR functionality directly into VCSEL-based transceivers. This built-in test capability is straightforward to implement and relevant to both multimode and single mode networks. In-situ OTDR uses the transmitter VCSEL already present in data transceivers. Fault monitoring is performed by emitting a brief optical pulse into the fiber and then turning the VCSEL off. If a fault exists, a portion of the optical pulse returns to the transceiver after a time equal to the round-trip delay through the fiber. In multimode OTDR, the signal is detected by an integrated photodetector, while in single mode OTDR the VCSEL itself can be used as a detector. Modified driver electronics perform the measurement and analysis. We demonstrate that VCSEL-based OTDR has sufficient sensitivity to determine the location of most faults commonly seen in short-haul networks (i.e., the Fresnel reflections from improperly terminated fibers and scattering from raggedly-broken fibers). Results are described for single mode and multimode experiments, at both 850 nm and 1.3 μm. We discuss the resolution and sensitivity that have been achieved, as well as expected limitations for this novel approach to network monitoring.
This report describes the research accomplishments achieved under the LDRD Project ''Leaky-mode VCSELs for photonic logic circuits''. Leaky-mode vertical-cavity surface-emitting lasers (VCSELs) offer new possibilities for integration of microcavity lasers to create optical microsystems. A leaky-mode VCSEL output-couples light laterally, in the plane of the semiconductor wafer, which allows the light to interact with adjacent lasers, modulators, and detectors on the same wafer. The fabrication of leaky-mode VCSELs based on effective index modification was proposed and demonstrated at Sandia in 1999 but was not adequately developed for use in applications. The aim of this LDRD has been to advance the design and fabrication of leaky-mode VCSELs to the point where initial applications can be attempted. In the first and second years of this LDRD we concentrated on overcoming previous difficulties in the epitaxial growth and fabrication of these advanced VCSELs. In the third year, we focused on applications of leaky-mode VCSELs, such as all-optical processing circuits based on gain quenching.
Vertical-external-cavity surface-emitting lasers (VECSELs) combine high optical power and good beam quality in a device with surface-normal output. In this paper, we describe the design and operating characteristics of an electrically-pumped VECSEL that employs a wafer-scale fabrication process and operates at 850 nm. A curved micromirror output coupler is heterogeneously integrated with AlGaAs-based semiconductor material to form a compact and robust device. The structure relies on flip-chip bonding the processed epitaxial material to an aluminum nitride mount; this heatsink both dissipates thermal energy and permits high frequency modulation using coplanar traces that lead to the VECSEL mesa. Backside emission is employed, and laser operation at 850 nm is made possible by removing the entire GaAs substrate through selective wet etching. While substrate removal eliminates absorptive losses, it simultaneously compromises laser performance by increasing series resistance and degrading the spatial uniformity of current injection. Several aspects of the VECSEL design help to mitigate these issues, including the use of a novel current-spreading n-type distributed Bragg reflector (DBR). Additionally, VECSEL performance is improved through the use of a p-type DBR that is modified for low thermal resistance.
This paper describes the photonic component development, which exploits pioneering work and unique expertise at Sandia National Laboratories, ARDEC and the Army Research Laboratory by combining key optoelectronic technologies to design and demonstrate components for this fuzing application. The technologies under investigation for the optical fuze design covered in this paper are vertical cavity surface emitting lasers (VECSELs), integrated resonant cavity photodetectors (RCPD), and diffractive micro-optics. The culmination of this work will be low cost, robust, fully integrated, g-hardened components designed suitable for proximity fuzing applications. The use of advanced photonic components will enable replacement of costly assemblies that employ discrete lasers, photodetectors, and bulk optics. The integrated devices will be mass produced and impart huge savings for a variety of Army applications.
A new approach to optical time-domain reflectometry (OTDR) is proposed that will enable distributed fault monitoring in singlemode VCSEL-based networks. In situ OTDR uses the transmitter VCSEL already resident in data transceivers as both emitter and resonant-cavity photodiode for fault location measurements. Also valuable at longer wavelengths, the concept is demonstrated here using an 850 nm oxide-confined VCSEL and simple electronics. The dead times and sensitivity obtained are adequate to detect the majority of faults anticipated in local- and metropolitan-area networks.
The goal of this LDRD was to investigate III-antimonide/nitride based materials for unique semiconductor properties and applications. Previous to this study, lack of basic information concerning these alloys restricted their use in semiconductor devices. Long wavelength emission on GaAs substrates is of critical importance to telecommunication applications for cost reduction and integration into microsystems. Currently InGaAsN, on a GaAs substrate, is being commercially pursued for the important 1.3 micrometer dispersion minima of silica-glass optical fiber; due, in large part, to previous research at Sandia National Laboratories. However, InGaAsN has not shown great promise for 1.55 micrometer emission which is the low-loss window of single mode optical fiber used in transatlantic fiber. Other important applications for the antimonide/nitride based materials include the base junction of an HBT to reduce the operating voltage which is important for wireless communication links, and for improving the efficiency of a multijunction solar cell. We have undertaken the first comprehensive theoretical, experimental and device study of this material with promising results. Theoretical modeling has identified GaAsSbN to be a similar or potentially superior candidate to InGaAsN for long wavelength emission on GaAs. We have confirmed these predictions by producing emission out to 1.66 micrometers and have achieved edge emitting and VCSEL electroluminescence at 1.3 micrometers. We have also done the first study of the transport properties of this material including mobility, electron/hole mass, and exciton reduced mass. This study has increased the understanding of the III-antimonide/nitride materials enough to warrant consideration for all of the target device applications.
This report describes the research accomplishments achieved under the LDRD Project 'Radiation Hardened Optoelectronic Components for Space-Based Applications.' The aim of this LDRD has been to investigate the radiation hardness of vertical-cavity surface-emitting lasers (VCSELs) and photodiodes by looking at both the effects of total dose and of single-event upsets on the electrical and optical characteristics of VCSELs and photodiodes. These investigations were intended to provide guidance for the eventual integration of radiation hardened VCSELs and photodiodes with rad-hard driver and receiver electronics from an external vendor for space applications. During this one-year project, we have fabricated GaAs-based VCSELs and photodiodes, investigated ionization-induced transient effects due to high-energy protons, and measured the degradation of performance from both high-energy protons and neutrons.
Artificially structured photonic lattice materials are commonly investigated for their unique ability to block and guide light. However, an exciting aspect of photonic lattices which has received relatively little attention is the extremely high refractive index dispersion within the range of frequencies capable of propagating within the photonic lattice material. In fact, it has been proposed that a negative refractive index may be realized with the correct photonic lattice configuration. This report summarizes our investigation, both numerically and experimentally, into the design and performance of such photonic lattice materials intended to optimize the dispersion of refractive index in order to realize new classes of photonic devices.
GaAsSbN was grown by organometallic vapor phase epitaxy (OMVPE) as an alternative material to InGaAsN for long wavelength emission on GaAs substrates. OMVPE of GaAsSbN using trimethylgallium, 100% arsine, trimethylantimony, and 1,1-dimethylhydrazine was found to be kinetically limited at growth temperatures ranging from 520 C to 600 C, with an activation energy of 10.4 kcal/mol. The growth rate was linearly dependent on the group III flow and has a complex dependence on the group V constituents. A room temperature photoluminescence wavelength of >1.3 {micro}m was observed for unannealed GaAs{sub 0.69}Sb{sub 0.3}N{sub 0.01}. Low temperature (4 K) photoluminescence of GaAs{sub 0.69}Sb{sub 0.3}N{sub 0.01} shows an increase in FWHM of 2.4-3.4 times the FWHM of GaAs{sub 0.7}Sb{sub 0.3}, a red shift of 55-77 meV, and a decrease in intensity of one to two orders of magnitude. Hall measurements indicate a behavior similar to that of InGaAsN, a 300 K hole mobility of 350 cm{sup 2}/V-s with a 1.0 x 10{sup 17}/cm{sup 3} background hole concentration, and a 77 K mobility of 1220 cm{sup 2}/V-s with a background hole concentration of 4.8 x 10{sup 16}/cm{sup 3}. The hole mass of GaAs{sub 0.7}Sb{sub 0.3}/GaAs heterostructures was estimated at 0.37-0.40m{sub o}, and we estimate an electron mass of 0.2-0.3m{sub o} for the GaAs{sub 0.69}Sb{sub 0.3}N{sub 0.01}/GaAs system. The reduced exciton mass for GaAsSbN was estimated at about twice that found for GaAsSb by a comparison of diamagnetic shift vs. magnetic field.
This report describes the research accomplishments achieved under the LDRD Project ''High-Bandwidth Optical Data Interconnects for Satellite Applications.'' The goal of this LDRD has been to address the future needs of focal-plane-array (FPA) sensors by exploring the use of high-bandwidth fiber-optic interconnects to transmit FPA signals within a satellite. We have focused primarily on vertical-cavity surface-emitting laser (VCSEL) based transmitters, due to the previously demonstrated immunity of VCSELs to total radiation doses up to 1 Mrad. In addition, VCSELs offer high modulation bandwidth (roughly 10 GHz), low power consumption (roughly 5 mW), and high coupling efficiency (greater than -3dB) to optical fibers. In the first year of this LDRD, we concentrated on the task of transmitting analog signals from a cryogenic FPA to a remote analog-to-digital converter. In the second year, we considered the transmission of digital signals produced by the analog-to-digital converter to a remote computer on the satellite. Specifically, we considered the situation in which the FPA, analog-to-digital converter, and VCSEL-based transmitter were all cooled to cryogenic temperatures. This situation requires VCSELs that operate at cryogenic temperature, dissipate minimal heat, and meet the electrical drive requirements in terms of voltage, current, and bandwidth.
Rotation sensors (gyros) and accelerometers are essential components for all precision-guided weapons and autonomous mobile surveillance platforms. MEMS gyro development has been based primarily on the properties of moving mass to sense rotation and has failed to keep pace with the concurrent development of MEMS accelerometers because the reduction of size and therefore mass is substantially more detrimental to the performance of gyros than to accelerometers. A small ({approx}0.2 cu in), robust ({approx}20,000g), inexpensive ({approx}$500), tactical grade performance ({approx}10-20 deg/hr.) gyro is vital for the successful implementation of the next generation of ''smart'' weapons and surveillance apparatus. The range of applications (relevant to Sandia's mission) that are substantially enhanced in capability or enabled by the availability of a gyro possessing the above attributes includes nuclear weapon guidance, fuzing, and safing; synthetic aperture radar (SAR) motion compensation; autonomous air and ground vehicles; gun-launched munitions; satellite control; and personnel tracking. For example, a gyro of this capability would open for consideration more fuzing options for earth-penetration weapons. The MEMS gyros currently available are lacking in one or more of the aforementioned attributes. An integrated optical gyro, however, possesses the potential of achieving all desired attributes. Optical gyros use the properties of light to sense rotation and require no moving mass. Only the individual optical elements required for the generation, detection, and control of light are susceptible to shock. Integrating these elements immensely enhances the gyro's robustness while achieving size and cost reduction. This project's goal, a joint effort between organizations 2300 and 1700, was to demonstrate an RMOG produced from a monolithic photonic integrated circuit coupled with a SiON waveguide resonator. During this LDRD program, we have developed the photonic elements necessary for a resonant micro-optical gyro. We individually designed an AlGaAs distributed Bragg reflector laser; GaAs phase modulator and GaAs photodiode detector. Furthermore, we have fabricated a breadboard gyroscope, which was used to confirm modeling and evaluate signal processing and control circuits.
Many MEMS-based components require optical monitoring techniques using optoelectronic devices for converting mechanical position information into useful electronic signals. While the constituent piece-parts of such hybrid opto-MEMS components can be separately optimized, the resulting component performance, size, ruggedness and cost are substantially compromised due to assembly and packaging limitations. GaAs MOEMS offers the possibility of monolithically integrating high-performance optoelectronics with simple mechanical structures built in very low-stress epitaxial layers with a resulting component performance determined only by GaAs microfabrication technology limitations. GaAs MOEMS implicitly integrates the capability for radiation-hardened optical communications into the MEMS sensor or actuator component, a vital step towards rugged integrated autonomous microsystems that sense, act, and communicate. This project establishes a new foundational technology that monolithically combines GaAs optoelectronics with simple mechanics. Critical process issues addressed include selectivity, electrochemical characteristics, and anisotropy of the release chemistry, and post-release drying and coating processes. Several types of devices incorporating this novel technology are demonstrated.
The density of threading dislocations (TD) in GaN grown directly on flat sapphire substrates is typically greater than 10{sup 9}/cm{sup 2}. Such high dislocation densities degrade both the electronic and photonic properties of the material. The density of dislocations can be decreased by orders of magnitude using cantilever epitaxy (CE), which employs prepatterned sapphire substrates to provide reduced-dimension mesa regions for nucleation and etched trenches between them for suspended lateral growth of GaN or AlGaN. The substrate is prepatterned with narrow lines and etched to a depth that permits coalescence of laterally growing III-N nucleated on the mesa surfaces before vertical growth fills the etched trench. Low dislocation densities typical of epitaxial lateral overgrowth (ELO) are obtained in the cantilever regions and the TD density is also reduced up to 1 micrometer from the edge of the support regions.