Towards Dislocation-Free ZnCdTe Solar Cells Through Nanoscale Crystal Growth And Compositional Grading
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in Progress in Photovoltaics Journal.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Progress In Photovoltaics Journal
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference: 2010 Laser Science to Photonic Applications, CLEO/QELS 2010
The first demonstration of a silicon microring modulator with both an integrated resistive heater and diode-based temperature sensor is shown. The temperature-sensor exhibits a linear response for more than an 85 °C external temperature range. ©2010 Optical Society of America.
We present a 2 x 2 silicon thermo-optic switch with a switching power of only {approx}12.5 mW and a response time of 5.4 {micro}s with an extinction ratio of {approx}>20 dB across the C and L bands.
Abstract not provided.
Thin and small form factor cells have been researched lately by several research groups around the world due to possible lower assembly costs and reduced material consumption with higher efficiencies. Given the popularity of these devices, it is important to have detailed information about the behavior of these devices. Simulation of fabrication processes and device performance reveals some of the advantages and behavior of solar cells that are thin and small. Three main effects were studied: the effect of surface recombination on the optimum thickness, efficiency, and current density, the effect of contact distance on the efficiency for thin cells, and lastly the effect of surface recombination on the grams per Watt-peak. Results show that high efficiency can be obtained in thin devices if they are well-passivated and the distance between contacts is short. Furthermore, the ratio of grams per Watt-peak is greatly reduced as the device is thinned.
We present a newly developed microsystem enabled, back-contacted, shade-free GaAs solar cell. Using microsystem tools, we created sturdy 3 {micro}m thick devices with lateral dimensions of 250 {micro}m, 500 {micro}m, 1 mm, and 2 mm. The fabrication procedure and the results of characterization tests are discussed. The highest efficiency cell had a lateral size of 500 {micro}m and a conversion efficiency of 10%, open circuit voltage of 0.9 V and a current density of 14.9 mA/cm{sup 2} under one-sun illumination.
Abstract not provided.
We present a newly developed microsystem enabled, back-contacted, shade-free GaAs solar cell. Using microsystem tools, we created sturdy 3 {micro}m thick devices with lateral dimensions of 250 {micro}m, 500 {micro}m, 1 mm, and 2 mm. The fabrication procedure and the results of characterization tests are discussed. The highest efficiency cell had a lateral size of 500 {micro}m and a conversion efficiency of 10%, open circuit voltage of 0.9 V and a current density of 14.9 mA/cm{sup 2} under one-sun illumination.
Abstract not provided.
Future Photovoltaics
Abstract not provided.
Solar Energy Materials and Solar Cells
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum Electronics and Laser Science Conference, CLEO/QELS 2009
A new class of microphotonic-resonators, Adiabatic Resonant Microrings (ARMs), is introduced. The ARM resonator geometry enables heater elements to be formed within the resonator, simultaneously enabling record low-power (4.4μW/GHz) and record high-speed (1μs) thermal tuning. ©2009 Optical Society of America.
Abstract not provided.
The advent of high quality factor (Q) microphotonic-resonators has led to the demonstration of high-fidelity optical sensors of many physical phenomena (e.g. mechanical, chemical, and biological sensing) often with far better sensitivity than traditional techniques. Microphotonic-resonators also offer potential advantages as uncooled thermal detectors including significantly better noise performance, smaller pixel size, and faster response times than current thermal detectors. In particular, microphotonic thermal detectors do not suffer from Johnson noise in the sensor, offer far greater responsivity, and greater thermal isolation as they do not require metallic leads to the sensing element. Such advantages make the prospect of a microphotonic thermal imager highly attractive. Here, we introduce the microphotonic thermal detection technique, present the theoretical basis for the approach, discuss our progress on the development of this technology and consider future directions for thermal microphotonic imaging. Already we have demonstrated viability of device fabrication with the successful demonstration of a 20{micro}m pixel, and a scalable readout technique. Further, to date, we have achieved internal noise performance (NEP{sub Internal} < 1pW/{radical}Hz) in a 20{micro}m pixel thereby exceeding the noise performance of the best microbolometers while simultaneously demonstrating a thermal time constant ({tau} = 2ms) that is five times faster. In all, this results in an internal detectivity of D*{sub internal} = 2 x 10{sup 9}cm {center_dot} {radical}Hz/W, while roughly a factor of four better than the best uncooled commercial microbolometers, future demonstrations should enable another order of magnitude in sensitivity. While much work remains to achieve the level of maturity required for a deployable technology, already, microphotonic thermal detection has demonstrated considerable potential.
Abstract not provided.