PFLOTRAN Support Infrastructure
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Computers and Geosciences
Time-lapse electrical resistivity tomography (ERT) is finding increased application for remotely monitoring processes occurring in the near subsurface in three-dimensions (i.e. 4D monitoring). However, there are few codes capable of simulating the evolution of subsurface resistivity and corresponding tomographic measurements arising from a particular process, particularly in parallel and with an open source license. Herein we describe and demonstrate an electrical resistivity tomography module for the PFLOTRAN subsurface flow and reactive transport simulation code, named PFLOTRAN-E4D. The PFLOTRAN-E4D module operates in parallel using a dedicated set of compute cores in a master-slave configuration. At each time step, the master processes receives subsurface states from PFLOTRAN, converts those states to bulk electrical conductivity, and instructs the slave processes to simulate a tomographic data set. The resulting multi-physics simulation capability enables accurate feasibility studies for ERT imaging, the identification of the ERT signatures that are unique to a given process, and facilitates the joint inversion of ERT data with hydrogeological data for subsurface characterization. PFLOTRAN-E4D is demonstrated herein using a field study of stage-driven groundwater/river water interaction ERT monitoring along the Columbia River, Washington, USA. Results demonstrate the complex nature of subsurface electrical conductivity changes, in both the saturated and unsaturated zones, arising from river stage fluctuations and associated river water intrusion into the aquifer. The results also demonstrate the sensitivity of surface based ERT measurements to those changes over time. PFLOTRAN-E4D is available with the PFLOTRAN development version with an open-source license at https://bitbucket.org/pflotran/pflotran-dev.
ANS IHLRWM 2017 - 16th International High-Level Radioactive Waste Management Conference: Creating a Safe and Secure Energy Future for Generations to Come - Driving Toward Long-Term Storage and Disposal
An important feature required in all geological disposal system modeling is proper representation of waste package degradation and waste form dissolution. These processes are often treated as batch operations, meaning they are zero-dimensional. However, waste package canister degradation or waste form dissolution are affected by near-field conditions, and thus they must be coupled to the computational domain through the exchange of information on local conditions. Accurate waste package and waste form degradation behavior is essential because processes occurring at the batch level also affect far field conditions through heat and mass transport by advection or diffusion. Presented here is the development and performance of the Waste Form Process Model, an integrated module for waste package canister degradation and waste form dissolution developed by Sandia National Laboratories within PFLOTRAN. PFLOTRAN is an open source, massively parallel subsurface simulator for multiphase, multicomponent, and multiscale reactive flow and transport processes in porous media. PFLOTRAN is used to model geologic disposal systems for the Spent Fuel and Waste Science and Technology (SFWST) Campaign under the Spent Fuel and Waste Disposition Program of the U.S. Department of Energy (DOE) Office of Nuclear Energy.