Publications

Results 1–50 of 121
Skip to search filters

Phonon scattering mechanisms dictating the thermal conductivity of lead zirconate titanate (PbZr1-xTixO3) thin films across the compositional phase diagram

Journal of Applied Physics

Foley, Brian M.; Paisley, Elizabeth A.; DiAntonio, Christopher D.; Chavez, Tom C.; Blea-Kirby, Mia A.; Brennecka, Geoffrey L.; Gaskins, John T.; Ihlefeld, Jon I.; Hopkins, Patrick E.

This work represents a thorough investigation of the thermal conductivity (κ) in both thin film and bulk PbZr1-xTixO3 (PZT) across the compositional phase diagram. Given the technological importance of PZT as a superb piezoelectric and ferroelectric material in devices and systems impacting a wide array of industries, this research serves to fill the gap in knowledge regarding the thermal properties. The thermal conductivities of both thin film and bulk PZT are found to vary by a considerable margin as a function of composition x. Additionally, we observe a discontinuity in κ in the vicinity of the morphotropic phase boundary (MPB, x = 0.48) where there is a 20%-25% decrease in κ in our thin film data, similar to that found in literature data for bulk PZT. The comparison between bulk and thin film materials highlights the sensitivity of κ to size effects such as film thickness and grain size even in disordered alloy/solid-solution materials. A model for the thermal conductivity of PZT as a function of composition (κ (x)) is presented, which enables the application of the virtual crystal approximation for alloy-type material systems with very different crystals structures, resulting in differing temperature trends for κ. We show that in the case of crystalline solid-solutions where the thermal conductivity of one of the parent materials exhibits glass-like temperature trends the compositional dependence of thermal conductivity is relatively constant for most values of x. This is in stark contrast with the typical trends of thermal conductivity with x in alloys, where the thermal conductivity increases dramatically as the composition of the alloy or solid-solution approaches that of a pure parent materials (i.e., as x = 0 or 1).

More Details

Thermal transport in tantalum oxide films for memristive applications

Applied Physics Letters

Landon, Colin D.; Wilke, Rudeger H.T.; Brumbach, Michael T.; Brennecka, Geoffrey L.; Blea-Kirby, Mia A.; Ihlefeld, Jon I.; Marinella, Matthew J.; Beechem, Thomas E.

The thermal conductivity of amorphous TaOx memristive films having variable oxygen content is measured using time domain thermoreflectance. Thermal transport is described by a two-part model where the electrical contribution is quantified via the Wiedemann-Franz relation and the vibrational contribution by the minimum thermal conductivity limit for amorphous solids. The vibrational contribution remains constant near 0.9 W/mK regardless of oxygen concentration, while the electrical contribution varies from 0 to 3.3 W/mK. Thus, the dominant thermal carrier in TaOx switches between vibrations and charge carriers and is controllable either by oxygen content during deposition, or dynamically by field-induced charge state migration.

More Details

Crystallographic changes in lead zirconate titanate due to neutron irradiation

AIP Advances

Henriques, Alexandra; Graham, Joseph T.; Landsberger, Sheldon; Ihlefeld, Jon I.; Brennecka, Geoffrey L.; Brown, Donald W.; Forrester, Jennifer S.; Jones, Jacob L.

Piezoelectric and ferroelectric materials are useful as the active element in non-destructive monitoring devices for high-radiation areas. Here, crystallographic structural refinement (i.e., the Rietveld method) is used to quantify the type and extent of structural changes in PbZr0.5Ti0.5O3 after exposure to a 1 MeV equivalent neutron fluence of 1.7×1015 neutrons/cm2. The results showa measurable decrease in the occupancy of Pb and O due to irradiation, with O vacancies in the tetragonal phase being created preferentially on one of the two Osites. The results demonstrate a method by which the effects of radiation on crystallographic structure may be investigated.

More Details

Characterization of Switching Filament Formation in TaOx Memristive Memory Films

Marinella, Matthew J.; Marinella, Matthew J.; Howell, Stephen W.; Howell, Stephen W.; Decker, Seth D.; Decker, Seth D.; Hughart, David R.; Hughart, David R.; Lohn, Andrew L.; Lohn, Andrew L.; Mickel, Patrick R.; Mickel, Patrick R.; Apodaca, Roger A.; Apodaca, Roger A.; Bielejec, Edward S.; Bielejec, Edward S.; Beechem, Thomas E.; Beechem, Thomas E.; Wolfley, Steven L.; Wolfley, Steven L.; Stevens, James E.; Brennecka, Geoffrey L.

Abstract not provided.

Simulation studies of nucleation of ferroelectric polarization reversal

Brennecka, Geoffrey L.; Winchester, Benjamin W.

Electric field-induced reversal of spontaneous polarization is the defining characteristic of a ferroelectric material, but the process(es) and mechanism(s) associated with the initial nucleation of reverse-polarity domains are poorly understood. This report describes studies carried out using phase field modeling of LiTaO3, a relatively simple prototype ferroelectric material, in order to explore the effects of either mechanical deformation or optically-induced free charges on nucleation and resulting domain configuration during field-induced polarization reversal. Conditions were selected to approximate as closely as feasible those of accompanying experimental work in order to provide not only support for the experimental work but also ensure that additional experimental validation of the simulations could be carried out in the future. Phase field simulations strongly support surface mechanical damage/deformation as effective for dramatically reducing the overall coercive field (Ec) via local field enhancements. Further, optically-nucleated polarization reversal appears to occur via stabilization of latent nuclei via the charge screening effects of free charges.

More Details

Electrical conductivity in oxygen-deficient phases of transition metal oxides from first-principles calculations

Desjarlais, Michael P.; Thompson, Aidan P.; Brennecka, Geoffrey L.; Marinella, Matthew J.

Density-functional theory calculations, ab-initio molecular dynamics, and the Kubo-Greenwood formula are applied to predict electrical conductivity in Ta2Ox (0 x 5) as a function of composition, phase, and temperature, where additional focus is given to various oxidation states of the O monovacancy (VOn; n=0,1+,2+). Our calculations of DC conductivity at 300K agree well with experimental measurements taken on Ta2Ox thin films and bulk Ta2O5 powder-sintered pellets, although simulation accuracy can be improved for the most insulating, stoichiometric compositions. Our conductivity calculations and further interrogation of the O-deficient Ta2O5 electronic structure provide further theoretical basis to substantiate VO0 as a donor dopant in Ta2O5 and other metal oxides. Furthermore, this dopant-like behavior appears specific to neutral VO cases in both Ta2O5 and TiO2 and was not observed in other oxidation states. This suggests that reduction and oxidation reactions may effectively act as donor activation and deactivation mechanisms, respectively, for VO0 in transition metal oxides.

More Details
Results 1–50 of 121
Results 1–50 of 121