Publications

Results 76–100 of 137
Skip to search filters

NON-PROLIFERATION IMPACT ASSESSMENT FOR GNEP: ISSUES ASSOCIATED WITH TRANSPORTATION

Radel, Ross R.; Rochau, Gary E.

This report evaluates transportation issues for nuclear material in the proposed Global Nuclear Energy Partnership (GNEP) fuel cycle. Since many details of the GNEP program are yet to be determined, this document is intended only to identify general issues. The existing regulatory environment is determined to be largely prepared to incorporate the changes that the GNEP program will introduce. Nuclear material vulnerability and attractiveness are considered with respect to the various transport stages within the GNEP fuel cycle. Physical protection options are then outlined for the transportation of this nuclear material. It is determined that increased transportation security will be required for the GNEP fuel cycle, particularly for international transport. Finally, transportation considerations for several fuel cycle scenarios are discussed. These scenarios compare the current "once-through" fuel cycle with various aspects of the proposed GNEP fuel cycle. 3

More Details

Differential B-dot and D-dot monitors for current and voltage measurements on a 20-MA 3-MV pulsed-power accelerator

Proposed for publication in Physical Review Special Topics - Accelerators and Beams.

Stygar, William A.; Savage, Mark E.; Speas, Christopher S.; Struve, Kenneth W.; Donovan, Guy L.; Lee, James R.; Leeper, Ramon J.; Leifeste, Gordon T.; Mills, Jerry A.; Rochau, G.A.; Rochau, Gary E.

We have developed a system of differential-output monitors that diagnose current and voltage in the vacuum section of a 20-MA 3-MV pulsed-power accelerator. The system includes 62 gauges: 3 current and 6 voltage monitors that are fielded on each of the accelerator's 4 vacuum-insulator stacks, 6 current monitors on each of the accelerator's 4 outer magnetically insulated transmission lines (MITLs), and 2 current monitors on the accelerator's inner MITL. The inner-MITL monitors are located 6 cm from the axis of the load. Each of the stack and outer-MITL current monitors comprises two separate B-dot sensors, each of which consists of four 3-mm-diameter wire loops wound in series. The two sensors are separately located within adjacent cavities machined out of a single piece of copper. The high electrical conductivity of copper minimizes penetration of magnetic flux into the cavity walls, which minimizes changes in the sensitivity of the sensors on the 100-ns time scale of the accelerator's power pulse. A model of flux penetration has been developed and is used to correct (to first order) the B-dot signals for the penetration that does occur. The two sensors are designed to produce signals with opposite polarities; hence, each current monitor may be regarded as a single detector with differential outputs. Common-mode-noise rejection is achieved by combining these signals in a 50-{Omega} balun. The signal cables that connect the B-dot monitors to the balun are chosen to provide reasonable bandwidth and acceptable levels of Compton drive in the bremsstrahlung field of the accelerator. A single 50-{omega} cable transmits the output signal of each balun to a double-wall screen room, where the signals are attenuated, digitized (0.5-ns/sample), numerically compensated for cable losses, and numerically integrated. By contrast, each inner-MITL current monitor contains only a single B-dot sensor. These monitors are fielded in opposite-polarity pairs. The two signals from a pair are not combined in a balun; they are instead numerically processed for common-mode-noise rejection after digitization. All the current monitors are calibrated on a 76-cm-diameter axisymmetric radial transmission line that is driven by a 10-kA current pulse. The reference current is measured by a current-viewing resistor (CVR). The stack voltage monitors are also differential-output gauges, consisting of one 1.8-cm-diameter D-dot sensor and one null sensor. Hence, each voltage monitor is also a differential detector with two output signals, processed as described above. The voltage monitors are calibrated in situ at 1.5 MV on dedicated accelerator shots with a short-circuit load. Faraday's law of induction is used to generate the reference voltage: currents are obtained from calibrated outer-MITL B-dot monitors, and inductances from the system geometry. In this way, both current and voltage measurements are traceable to a single CVR. Dependable and consistent measurements are thus obtained with this system of calibrated diagnostics. On accelerator shots that deliver 22 MA to a low-impedance z-pinch load, the peak lineal current densities at the stack, outer-MITL, and inner-MITL monitor locations are 0.5, 1, and 58 MA/m, respectively. On such shots the peak currents measured at these three locations agree to within 1%.

More Details

The role of Z-pinch fusion transmutation of waste in the nuclear fuel cycle

Cipiti, Benjamin B.; Martin, William J.; Mehlhorn, Thomas A.; Rochau, Gary E.; Guild-Bingham, Avery G.

The resurgence of interest in reprocessing in the United States with the Global Nuclear Energy Partnership has led to a renewed look at technologies for transmuting nuclear waste. Sandia National Laboratories has been investigating the use of a Z-Pinch fusion driver to burn actinide waste in a sub-critical reactor. The baseline design has been modified to solve some of the engineering issues that were identified in the first year of work, including neutron damage and fuel heating. An on-line control feature was added to the reactor to maintain a constant neutron multiplication with time. The transmutation modeling effort has been optimized to produce more accurate results. In addition, more attention was focused on the integration of this burner option within the fuel cycle including an investigation of overall costs. This report presents the updated reactor design, which is able to burn 1320 kg of actinides per year while producing 3,000 MWth.

More Details

Strengthening the foundations of proliferation assessment tools

Saltiel, David H.; Rochau, Gary E.; Rexroth, Paul E.; Cleary, Virginia D.

Robust and reliable quantitative proliferation assessment tools have the potential to contribute significantly to a strengthened nonproliferation regime and to the future deployment of nuclear fuel cycle technologies. Efforts to quantify proliferation resistance have thus far met with limited success due to the inherent subjectivity of the problem and interdependencies between attributes that lead to proliferation resistance. We suggest that these limitations flow substantially from weaknesses in the foundations of existing methodologies--the initial data inputs. In most existing methodologies, little consideration has been given to the utilization of varying types of inputs--particularly the mixing of subjective and objective data--or to identifying, understanding, and untangling relationships and dependencies between inputs. To address these concerns, a model set of inputs is suggested that could potentially be employed in multiple approaches. We present an input classification scheme and the initial results of testing for relationships between these inputs. We will discuss how classifying and testing the relationship between these inputs can help strengthen tools to assess the proliferation risk of nuclear fuel cycle processes, systems, and facilities.

More Details
Results 76–100 of 137
Results 76–100 of 137