Publications

Results 76–100 of 240
Skip to search filters

Communication: Polymer entanglement dynamics: Role of attractive interactions

Journal of Chemical Physics

Grest, Gary S.

The coupled dynamics of entangled polymers, which span broad time and length scales, govern their unique viscoelastic properties. To follow chain mobility by numerical simulations from the intermediate Rouse and reptation regimes to the late time diffusive regime, highly coarse grained models with purely repulsive interactions between monomers are widely used since they are computationally the most efficient. Here using large scale molecular dynamics simulations, the effect of including the attractive interaction between monomers on the dynamics of entangled polymer melts is explored for the first time over a wide temperature range. Attractive interactions have little effect on the local packing for all temperatures T and on the chain mobility for T higher than about twice the glass transition Tg. These results, across a broad range of molecular weight, show that to study the dynamics of entangled polymer melts, the interactions can be treated as pure repulsive, confirming a posteriori the validity of previous studies and opening the way to new large scale numerical simulations.

More Details

Dynamics in entangled polyethylene melts [Multi time scale dynamics in entangled polyethylene melts]

European Physical Journal. Special Topics

Salerno, Kenneth M.; Agrawal, Anupriya A.; Peters, Brandon L.; Perahia, Dvora P.; Grest, Gary S.

Polymer dynamics creates distinctive viscoelastic behavior as a result of a coupled interplay of motion at the atomic length scale and motion of the entire macromolecule. Capturing the broad time and length scales of polymeric motion however, remains a challenge. Using linear polyethylene as a model system, we probe the effects of the degree of coarse graining on polymer dynamics. Coarse-grained (CG) potentials are derived using iterative Boltzmann inversion with λ methylene groups per CG bead (denoted CGλ) with λ = 2,3,4 and 6 from a fully-atomistic polyethylene melt simulation. By rescaling time in the CG models by a factor α, the chain mobility for the atomistic and CG models match. We show that independent of the degree of coarse graining, all measured static and dynamic properties are essentially the same once the dynamic scaling factor α and a non-crossing constraint for the CG6 model are included. The speedup of the CG4 model is about 3 times that of the CG3 model and is comparable to that of the CG6 model. Furthermore, using these CG models we were able to reach times of over 500 μs, allowing us to measure a number of quantities, including the stress relaxation function, plateau modulus and shear viscosity, and compare directly to experiment.

More Details

Crazing of nanocomposites with polymer-tethered nanoparticles

Journal of Chemical Physics

Meng, Dong; Kumar, Sanat K.; Ge, Ting; Robbins, Mark O.; Grest, Gary S.

The crazing behavior of polymer nanocomposites formed by blending polymer grafted nanoparticles with an entangled polymer melt is studied by molecular dynamics simulations. We focus on the three key differences in the crazing behavior of a composite relative to the pure homopolymer matrix, namely, a lower yield stress, a smaller extension ratio, and a grafted chain length dependent failure stress. The yield behavior is found to be mostly controlled by the local nanoparticle-grafted polymer interfacial energy, with the grafted polymer-polymer matrix interfacial structure being of little to no relevance. Increasing the attraction between nanoparticle core and the grafted polymer inhibits void nucleation and leads to a higher yield stress. In the craze growth regime, the presence of "grafted chain" sections of ≈100 monomers alters the mechanical response of composite samples, giving rise to smaller extension ratios and higher drawing stresses than for the homopolymer matrix. The dominant failure mechanism of composite samples depends strongly on the length of the grafted chains, with disentanglement being the dominant mechanism for short chains, while bond breaking is the failure mode for chain lengths >10Ne, where Ne is the entanglement length.

More Details

Dispersing Nanoparticles in a Polymer Film via Solvent Evaporation

ACS Macro Letters

Cheng, Shengfeng; Grest, Gary S.

Large-scale molecular dynamics simulations are used to study the dispersion of nanoparticles (NPs) in a polymer film during solvent evaporation. As the solvent evaporates, a dense polymer-rich skin layer forms at the liquid/vapor interface, which is either NP rich or poor depending on the strength of the NP/polymer interaction. When the NPs are strongly wet by the polymer, the NPs accumulate at the interface and form layers. However, when the NPs are only partially wet by the polymer, most NPs are uniformly distributed in the bulk of the polymer film, with the dense skin layer serving as a barrier to prevent the NPs from moving to the interface. Our results point to a possible route to employ less favorable NP/polymer interactions and fast solvent evaporation to uniformly disperse NPs in a polymer film, contrary to the common belief that strong NP/polymer attractions are needed to make NPs well dispersed in polymer nanocomposites.

More Details

Cluster morphology-polymer dynamics correlations in sulfonated polystyrene melts: Computational study

Physical Review Letters

Agrawal, Anupriya; Perahia, Dvora; Grest, Gary S.

Reaching exceptionally long times up to 500 ns in equilibrium and nonequilibrium molecular dynamics simulations studies, we have attained a fundamental molecular understanding of the correlation of ionomer clusters structure and multiscale dynamics, providing new insight into one critical, long-standing challenge in ionic polymer physics. The cluster structure in melts of sulfonated polystyrene with Na+ and Mg2+ counterions are resolved and correlated with the dynamics on multiple length and time scales extracted from measurements of the dynamic structure factor and shear rheology. We find that as the morphology of the ionic clusters changes from ladderlike for Na+ to disordered structures for Mg2+, the dynamic structure factor is affected on the length scale corresponding to the ionic clusters. Rheology studies show that the viscosity for Mg2+ melts is higher than for Na+ ones for all shear rates, which is well correlated with the larger ionic clusters' size for the Mg2+ melts.

More Details

Dynamics of Polydots: Soft Luminescent Polymeric Nanoparticles

Macromolecules

Maskey, Sabina; Osti, Naresh C.; Grest, Gary S.; Perahia, Dvora

The conformation and dynamics of luminescent polymers collapsed into nanoparticles or polydots were studied using fully atomistic molecular dynamics (MD) simulations, providing a first insight into their internal dynamics. Controlling the conformation and dynamics of confined polymers is essential for realization of the full potential of polydots in nanomedicine and biotechnology. Specifically, the shape and internal dynamics of polydots that consist of highly rigid dialkyl p-phenylene ethynylene (PPE) are probed as a function of temperature. At room temperature, the polydots are spherical without any correlations between the aromatic rings on the PPE backbone. With increasing temperature, they expand and become slightly aspherical; however, the polymers remain confined. The coherent dynamic structure factor reveals that the internal motion of the polymer backbone is arrested, and the side chains dominate the internal dynamics of the polydots. These new soft nanoparticles retain their overall shape and dynamics over an extended temperature range, and their conformation is tunable via their degree of expansion.

More Details

Tension Amplification in Tethered Layers of Bottle-Brush Polymers

Macromolecules

Leuty, Gary M.; Tsige, Mesfin; Grest, Gary S.; Rubinstein, Michael

Molecular dynamics simulations of a coarse-grained bead-spring model have been used to study the effects of molecular crowding on the accumulation of tension in the backbone of bottle-brush polymers tethered to a flat substrate. The number of bottle-brushes per unit surface area, Σ, as well as the lengths of the bottle-brush backbones Nbb (50 ≤ Nbb ≤ 200) and side chains Nsc (50 ≤ Nsc ≤ 200) were varied to determine how the dimensions and degree of crowding of bottle-brushes give rise to bond tension amplification along the backbone, especially near the substrate. From these simulations, we have identified three separate regimes of tension. For low Σ, the tension is due solely to intramolecular interactions and is dominated by the side chain repulsion that governs the lateral brush dimensions. With increasing Σ, the interactions between bottle-brush polymers induce compression of the side chains, transmitting increasing tension to the backbone. For large Σ, intermolecular side chain repulsion increases, forcing side chain extension and reorientation in the direction normal to the surface and transmitting considerable tension to the backbone.

More Details

Structure of Rigid Polymers Confined to Nanoparticles: Molecular Dynamics Simulations Insight

Langmuir

Maskey, Sabina; Lane, J.M.; Perahia, Dvora; Grest, Gary S.

Nanoparticles (NPs) grafted with organic layers form hybrids able to retain their unique properties through integration into the mesoscopic scale. The organic layer structure and response often determine the functionality of the hybrids on the mesoscopic length scale. Using molecular dynamics (MD) simulations, we probe the conformation of luminescent rigid polymers, dialkyl poly(p-phenylene ethynylene)s (PPE), end-grafted onto a silica nanoparticle in different solvents as the molecular weights and polymer coverages are varied. We find that, in contrast to NP-grafted flexible polymers, the chains are fully extended independent of the solvent. In toluene and decane, which are good solvents, the grafted PPEs chains assume a similar conformation to that observed in dilute solutions. In water, which is a poor solvent for the PPEs, the polymer chains form one large cluster but remain extended. The radial distribution of the chains around the core of the nanoparticle is homogeneous in good solvents, whereas in poor solvents clusters are formed independent of molecular weights and coverages. The clustering is distinctively different from the response of grafted flexible and semiflexible polymers.

More Details

Conformation of ionizable poly Para phenylene ethynylene in dilute solutions

Journal of Polymer Science, Part B: Polymer Physics

Wijesinghe, Sidath; Maskey, Sabina; Perahia, Dvora; Grest, Gary S.

The conformation of dinonyl poly para phenylene ethynylenes (PPEs) with carboxylate side chains, equilibrated in solvents of different quality have been studied using molecular dynamics simulations. PPEs are of interest because of their tunable electro-optical properties, chemical diversity, and functionality which are essential in wide range of applications. The polymer conformation determines the conjugation length and their assembly mode and affects electro-optical properties which are critical in current and potential uses. This study investigates the effect of carboxylate fraction on PPEs side chains on the conformation of chains in the dilute limit, in solvents of different quality. The dinonyl PPE chains are modeled atomistically, where the solvents are modeled both implicitly and explicitly. Dinonyl PPEs maintained a stretched out conformation up to a carboxylate fraction f of 0.7 in all solvents studied. The nonyl side chains are extended and oriented away from the PPE backbone in toluene and in implicit good solvent, whereas in water and implicit poor solvent, the nonyl side chains are collapsed toward the PPE backbone. Rotation around the aromatic ring is fast and no long range correlations are seen within the backbone.

More Details

Resolving Dynamic Properties of Polymers through Coarse-Grained Computational Studies

Physical Review Letters

Salerno, K.M.; Agrawal, Anupriya; Perahia, Dvora; Grest, Gary S.

Coupled length and time scales determine the dynamic behavior of polymers and underlie their unique viscoelastic properties. To resolve the long-time dynamics it is imperative to determine which time and length scales must be correctly modeled. Here we probe the degree of coarse graining required to simultaneously retain significant atomistic details and access large length and time scales. The degree of coarse graining in turn sets the minimum length scale instrumental in defining polymer properties and dynamics. Using linear polyethylene as a model system, we probe how the coarse-graining scale affects the measured dynamics. Iterative Boltzmann inversion is used to derive coarse-grained potentials with 2-6 methylene groups per coarse-grained bead from a fully atomistic melt simulation. We show that atomistic detail is critical to capturing large-scale dynamics. Using these models we simulate polyethylene melts for times over 500 μs to study the viscoelastic properties of well-entangled polymer melts.

More Details

Clustering effects in ionic polymers: Molecular dynamics simulations

Physical Review E - Statistical, Nonlinear, and Soft Matter Physics

Agrawal, Anupriya; Perahia, Dvora; Grest, Gary S.

Ionic clusters control the structure, dynamics, and transport in soft matter. Incorporating a small fraction of ionizable groups in polymers substantially reduces the mobility of the macromolecules in melts. These ionic groups often associate into random clusters in melts, where the distribution and morphology of the clusters impact the transport in these materials. Here, using molecular dynamic simulations we demonstrate a clear correlation between cluster size and morphology with the polymer mobility in melts of sulfonated polystyrene. We show that in low dielectric media ladderlike clusters that are lower in energy compared with spherical assemblies are formed. Reducing the electrostatic interactions by enhancing the dielectric constant leads to morphological transformation from ladderlike clusters to globular assemblies. Decrease in electrostatic interaction significantly enhances the mobility of the polymer.

More Details

Ligand structure and mechanical properties of single-nanoparticle-thick membranes

Physical Review E - Statistical, Nonlinear, and Soft Matter Physics

Salerno, K.M.; Bolintineanu, Dan S.; Lane, J.M.; Grest, Gary S.

The high mechanical stiffness of single-nanoparticle-thick membranes is believed to result from the local structure of ligand coatings that mediate interactions between nanoparticles. These ligand structures are not directly observable experimentally. We use molecular dynamics simulations to observe variations in ligand structure and simultaneously measure variations in membrane mechanical properties. We have shown previously that ligand end group has a large impact on ligand structure and membrane mechanical properties. Here we introduce and apply quantitative molecular structure measures to these membranes and extend analysis to multiple nanoparticle core sizes and ligand lengths. Simulations of nanoparticle membranes with a nanoparticle core diameter of 4 or 6 nm, a ligand length of 11 or 17 methylenes, and either carboxyl (COOH) or methyl (CH3) ligand end groups are presented. In carboxyl-terminated ligand systems, structure and interactions are dominated by an end-to-end orientation of ligands. In methyl-terminated ligand systems large ordered ligand structures form, but nanoparticle interactions are dominated by disordered, partially interdigitated ligands. Core size and ligand length also affect both ligand arrangement within the membrane and the membrane's macroscopic mechanical response, but are secondary to the role of the ligand end group. Moreover, the particular end group (COOH or CH3) alters the nature of how ligand length, in turn, affects the membrane properties. The effect of core size does not depend on the ligand end group, with larger cores always leading to stiffer membranes. Asymmetry in the stress and ligand density is observed in membranes during preparation at a water-vapor interface, with the stress asymmetry persisting in all membranes after drying.

More Details

Rouse mode analysis of chain relaxation in polymer nanocomposites

Soft Matter

Kalathi, Jagannathan T.; Kumar, Sanat K.; Rubinstein, Michael; Grest, Gary S.

Large-scale molecular dynamics simulations are used to study the internal relaxations of chains in nanoparticle (NP)/polymer composites. We examine the Rouse modes of the chains, a quantity that is closest in spirit to the self-intermediate scattering function, typically determined in an (incoherent) inelastic neutron scattering experiment. Our simulations show that for weakly interacting mixtures of NPs and polymers, the effective monomeric relaxation rates are faster than in a neat melt when the NPs are smaller than the entanglement mesh size. In this case, the NPs serve to reduce both the monomeric friction and the entanglements in the polymer melt, as in the case of a polymer-solvent system. However, for NPs larger than half the entanglement mesh size, the effective monomer relaxation is essentially unaffected for low NP concentrations. Even in this case, we observe a strong reduction in chain entanglements for larger NP loadings. Thus, the role of NPs is to always reduce the number of entanglements, with this effect only becoming pronounced for small NPs or for high concentrations of large NPs. Our studies of the relaxation of single chains resonate with recent neutron spin echo (NSE) experiments, which deduce a similar entanglement dilution effect.

More Details

Conformation of Single Pentablock Ionomer Chains in Dilute Solutions

Sandia journal manuscript; Not yet accepted for publication

Aryal, Dipak A.; Perahia, Dvora P.; Grest, Gary S.

The conformation of single chain pentablock ionomers (A-B-C-B-A) containing randomly sulfonated polystyrene in the center block, tethered to poly-ethylene-r-propylene end-capped by poly-t-butyl styrene is studied in dilute solutions by molecular dynamics simulations. Multi-block copolymers offer a means to tailor several properties into one molecule, taking advantage of their rich phase diagram together with unique properties of specific blocks. For this pentablock the ionic block facilitates transport while the A and B components are incorporated for mechanical stability. The present study investigates the confirmation of a single chain of pentablock ionomer of molecular weight Mw ~ 50,000 g/mol and sulfonated polystyrene of the same molecular weight as that of the center block for six sulfonation fractions f from f=0.0-0.55. For the sulfonated systems Na+ counterions are included. Results for the equilibrium conformation of the chains and the three blocks in water and 1:1 mixture of cyclohexane and n-heptane are compared to simulations in implicit poor solvents with dielectric constants ε =1.0 and 77.73. In water, the pentablock is collapsed with sulfonated groups on the outer surface. As the sulfonation fraction f increases, the ionic, center block is increasingly segregated from the hydrophobic regions. In the 1:1 mixture of cyclohexane and heptane both the flexible and end blocks are swollen while the center ionic block is collasped for f>0, while for f=0 all blocks are swollen. In both implicit poor solvents the pentablock is collapsed into a nearly spherical shape for all f. The sodium counterions are dispersed widely throughout the simulation cell for both water and ε =77.73 whereas for ε =1.0 the counterions are largely condensed on the collapsed pentablock.

More Details

Temperature effects on nanostructure and mechanical properties of single-nanoparticle thick membranes

Faraday Discussions

Salerno, K.M.; Grest, Gary S.

The properties of mechanically stable single-nanoparticle (NP)-thick membranes have largely been studied at room temperature. How these membranes soften as nanoparticle ligands disorder with increasing temperature is unknown. Molecular dynamics simulations are used to probe the temperature dependence of the mechanical and nanostructural properties of nanoparticle membranes made of 6 nm diameter Au nanoparticles coated with dodecanethiol ligands and terminated with either methyl (CH3) or carboxyl (COOH) terminal groups. For methyl-terminated ligands, interactions along the alkane chain provide mechanical stiffness, with a Young's modulus of 1.7 GPa at 300 K. For carboxyl-terminated chains, end-group interactions are significant, producing stiffer membranes at all temperatures, with a Young's modulus of 3.8 GPa at 300 K. For both end-group types, membrane stiffness is reduced to zero at about 400 K. Ligand structure and mechanical properties of membranes at 300 K that have been annealed at 400 K are comparable to samples that do not undergo thermal annealing.

More Details

Phase behavior of a single structured ionomer chain in solutiona

Macromolecular Theory and Simulations

Aryal, Dipak; Etampawala, Thusitha; Perahia, Dvora; Grest, Gary S.

Structured polymers offer a means to tailor transport pathways within mechanically stable manifolds. The building block of such a membrane is examined, namely a single large pentablock co-polymer that consists of a center block of a randomly sulfonated polystyrene, designed for transport, tethered to poly-Ethylene-R-Propylene and end-Capped by poly-T-Butyl styrene, for mechanical stability, using molecular dynamics simulations. The polymer structure in a cyclohexane-Heptane mixture, a technologically viable solvent, and in water, a poor solvent for all segments and a ubiquitous substance is extracted. In all solvents the pentablock collapsed into nearly spherical aggregates where the ionic block is segregated. In hydrophobic solvents, the ionic block resides in the center, surrounded by swollen intermix of flexible and end blocks. In water all blocks are collapsed with the sulfonated block residing on the surface. Our results demonstrate that solvents drive different local nano-Segregation, providing a gateway to assemble membranes with controlled topology.

More Details

Tensile fracture of welded polymer interfaces: Miscibility, entanglements, and crazing

Macromolecules

Ge, Ting; Grest, Gary S.; Robbins, Mark O.

Large-scale molecular simulations are performed to investigate tensile failure of polymer interfaces as a function of welding time t. Changes in the tensile stress, mode of failure and interfacial fracture energy GI are correlated to changes in the interfacial entanglements as determined from primitive path analysis. Bulk polymers fail through craze formation, followed by craze breakdown through chain scission. At small t welded interfaces are not strong enough to support craze formation and fail at small strains through chain pullout at the interface. Once chains have formed an average of about one entanglement across the interface, a stable craze is formed throughout the sample. The failure stress of the craze rises with welding time and the mode of craze breakdown changes from chain pullout to chain scission as the interface approaches bulk strength. The interfacial fracture energy GI is calculated by coupling the simulation results to a continuum fracture mechanics model. As in experiment, GI increases as t1/2 before saturating at the average bulk fracture energy Gb. As in previous simulations of shear strength, saturation coincides with the recovery of the bulk entanglement density. Before saturation, GI is proportional to the areal density of interfacial entanglements. Immiscibiltiy limits interdiffusion and thus suppresses entanglements at the interface. Even small degrees of immiscibility reduce interfacial entanglements enough that failure occurs by chain pullout and GI 蠐 Gb.

More Details
Results 76–100 of 240
Results 76–100 of 240