Publications

Results 51–75 of 82
Skip to search filters

Nanostructured material for advanced energy storage : magnesium battery cathode development

Bell, Nelson S.; Nagasubramanian, Ganesan N.

Magnesium batteries are alternatives to the use of lithium ion and nickel metal hydride secondary batteries due to magnesium's abundance, safety of operation, and lower toxicity of disposal. The divalency of the magnesium ion and its chemistry poses some difficulties for its general and industrial use. This work developed a continuous and fibrous nanoscale network of the cathode material through the use of electrospinning with the goal of enhancing performance and reactivity of the battery. The system was characterized and preliminary tests were performed on the constructed battery cells. We were successful in building and testing a series of electrochemical systems that demonstrated good cyclability maintaining 60-70% of discharge capacity after more than 50 charge-discharge cycles.

More Details

Study of novel nonflammable electrolytes in Sandia-built Li-ion cells

Nagasubramanian, Ganesan N.; Orendorff, Christopher O.

Even after decades of research, Li-ion cells still lack thermal stability. A number of approaches, including adding fire retardants or fluoro compounds to the electrolyte to mitigate fire, have been investigated. These additives improved the thermal stability of the cells (only marginally) but not enough for use in transportation applications. Recent investigations indicate that hydrofluoro-ethers are promising as nonflammable additives1. We describe here the results of our studies on electrolytes containing the hydrofluoro-ethers in cells fabricated at Sandia. In particular, we are investigating two solvents as nonflammable additives. These are: (1) 2-trifluoromethyl-3-methoxyperfluoropentane {l_brace}TMMP{r_brace} and (2) 2-trifluoro-2-fluoro-3-difluoropropoxy-3-difluoro-4-fluoro-5-trifluoropentane {l_brace}TPTP{r_brace}. These electrolytes not only have good thermal stability compared to the conventional electrolytes but respectable ionic conductivity. Sandia made 18650 cells successfully completed the formational cycle. The impedance behavior is typical of Li-ion cells.

More Details

In situ X-ray diffraction analysis of (CFx)n batteries: signal extraction by multivariate analysis

Journal of Applied Crystallography

Rodriguez, Marko A.; Nagasubramanian, Ganesan N.; Keenan, Michael R.

In this study, (CFx)n cathode reaction during discharge has been investigated using in situ X-ray diffraction (XRD). Mathematical treatment of the in situ XRD data set was performed using multivariate curve resolution with alternating least squares (MCR–ALS), a technique of multivariate analysis. MCR–ALS analysis successfully separated the relatively weak XRD signal intensity due to the chemical reaction from the other inert cell component signals. The resulting dynamic reaction component revealed the loss of (CFx)n cathode signal together with the simultaneous appearance of LiF by-product intensity. Careful examination of the XRD data set revealed an additional dynamic component which may be associated with the formation of an intermediate compound during the discharge process.

More Details

18650 Li-ion cells with reference electrode and in-situ characterization of electrodes

Proposed for publication in the Journal of Electrochemical Society.

Nagasubramanian, Ganesan N.; Doughty, Daniel H.

At Sandia National Laboratories, we have built 18650 Li-ion cells with Li reference electrode for in situ characterization of electrodes including impedance and other electrochemical properties. At a 200 mA ({approx}C/5 rate) discharge, the cell gave {approx}900 mAh. Impedance measurements indicate that the anode dominates the cell impedance. For example, at 0 C, the anode and cathode impedances at 10 mHz were around 149 and 53 m{Omega}, respectively, and the total cell impedance at 10 mHz was {approx}203 m{Omega}. The three-electrode configuration also permits measurement of individual electrode voltages during charge and discharge. During discharge, while the cell voltage drops from 4.1 to 3 V, the cathode and the anode voltages change from 4.1 to 3.7 and from {approx}0 to 0.7 V, respectively. During charge, the cathode and anode voltages trace back to their initial values before discharging. The voltage swing for the anode is higher than that for the cathode. This also indicates that the impedance for the anode is higher than for the cathode. Pulse measurements on the cells indicate the voltage drop of the full-cell is equal to the sum of the anode and cathode voltage drops for a 2 A discharge pulse.

More Details

Modeling capacity fade in lithium-ion cells

Journal of Power Sources

Liaw, Bor Y.; Jungst, Rudolph G.; Nagasubramanian, Ganesan N.; Case, Herbert L.; Doughty, Daniel H.

Battery life is an important, yet technically challenging, issue for battery development and application. Adequately estimating battery life requires a significant amount of testing and modeling effort to validate the results. Integrated battery testing and modeling is quite feasible today to simulate battery performance, and therefore applicable to predict its life. A relatively simple equivalent-circuit model (ECM) is used in this work to show that such an integrated approach can actually lead to a high-fidelity simulation of a lithium-ion cell's performance and life. The methodology to model the cell's capacity fade during thermal aging is described to illustrate its applicability to battery calendar life prediction. © 2004 Elsevier B. V. All rights reserved.

More Details
Results 51–75 of 82
Results 51–75 of 82