Publications

Results 51–100 of 114
Skip to search filters

The Energy Frontier Research Center for Solid-State Lighting Science: Exploring New Materials Architectures and Light Emission Phenomena

Journal of Physical Chemistry C

Coltrin, Michael E.; Subramania, Ganapathi S.; Tsao, Jeffrey Y.; Wang, George T.; Wierer, Jonathan W.; Wright, Jeremy B.; Armstrong, Andrew A.; Brener, Igal B.; Chow, Weng W.; Crawford, Mary H.; Fischer, Arthur J.; Koleske, Daniel K.; Martin, James E.; Rohwer, Lauren E.

Abstract not provided.

Final LDRD report : enhanced spontaneous emission rate in visible III-nitride LEDs using 3D photonic crystal cavities

Fischer, Arthur J.; Subramania, Ganapathi S.; Lee, Yun-Ju L.; Koleske, Daniel K.; Li, Qiming L.; Wang, George T.; Luk, Ting S.; Fullmer, Kristine W.

The fundamental spontaneous emission rate for a photon source can be modified by placing the emitter inside a periodic dielectric structure allowing the emission to be dramatically enhanced or suppressed depending on the intended application. We have investigated the relatively unexplored realm of interaction between semiconductor emitters and three dimensional photonic crystals in the visible spectrum. Although this interaction has been investigated at longer wavelengths, very little work has been done in the visible spectrum. During the course of this LDRD, we have fabricated TiO{sub 2} logpile photonic crystal structures with the shortest wavelength band gap ever demonstrated. A variety of different emitters with emission between 365 nm and 700 nm were incorporated into photonic crystal structures. Time-integrated and time-resolved photoluminescence measurements were performed to measure changes to the spontaneous emission rate. Both enhanced and suppressed emission were demonstrated and attributed to changes to the photonic density of states.

More Details

Plasmonic enhanced ultrafast switch

Shaner, Eric A.; Passmore, Brandon S.; Barrick, Todd A.; Subramania, Ganapathi S.; Reno, J.L.

Ultrafast electronic switches fabricated from defective material have been used for several decades in order to produce picosecond electrical transients and TeraHertz radiation. Due to the ultrashort recombination time in the photoconductor materials used, these switches are inefficient and are ultimately limited by the amount of optical power that can be applied to the switch before self-destruction. The goal of this work is to create ultrafast (sub-picosecond response) photoconductive switches on GaAs that are enhanced through plasmonic coupling structures. Here, the plasmonic coupler primarily plays the role of being a radiation condenser which will cause carriers to be generated adjacent to metallic electrodes where they can more efficiently be collected.

More Details

Mid-infrared quantum dot emitters utilizing planar photonic crystal technology

Shaner, Eric A.; Passmore, Brandon S.; Lyo, S.K.; Cederberg, Jeffrey G.; Subramania, Ganapathi S.; El-Kady, I.

The three-dimensional confinement inherent in InAs self-assembled quantum dots (SAQDs) yields vastly different optical properties compared to one-dimensionally confined quantum well systems. Intersubband transitions in quantum dots can emit light normal to the growth surface, whereas transitions in quantum wells emit only parallel to the surface. This is a key difference that can be exploited to create a variety of quantum dot devices that have no quantum well analog. Two significant problems limit the utilization of the beneficial features of SAQDs as mid-infrared emitters. One is the lack of understanding concerning how to electrically inject carriers into electronic states that allow optical transitions to occur efficiently. Engineering of an injector stage leading into the dot can provide current injection into an upper dot state; however, to increase the likelihood of an optical transition, the lower dot states must be emptied faster than upper states are occupied. The second issue is that SAQDs have significant inhomogeneous broadening due to the random size distribution. While this may not be a problem in the long term, this issue can be circumvented by using planar photonic crystal or plasmonic approaches to provide wavelength selectivity or other useful functionality.

More Details
Results 51–100 of 114
Results 51–100 of 114