Publications

Results 201–250 of 256
Skip to search filters

Pulsed-power driven inertial confinement fusion development at Sandia National Laboratories

Proposed for publication in 5th Special Issue of the IEEE Transactions on Plasma Science Z-Pinch Plasmas.

Cuneo, M.E.; Mazarakis, Michael G.; Lamppa, Derek C.; Kaye, Ronald J.; Nakhleh, Charles N.; Bailey, James E.; Hansen, Stephanie B.; McBride, Ryan D.; Herrmann, Mark H.; Lopez, A.; Peterson, Kyle J.; Ampleford, David A.; Jones, Michael J.; Savage, Mark E.; Jennings, Christopher A.; Martin, Matthew; Slutz, Stephen A.; Lemke, Raymond W.; Christenson, Peggy J.; Sweeney, Mary A.; Jones, Brent M.; Yu, Edmund Y.; McPherson, Leroy A.; Harding, Eric H.; Knapp, Patrick K.; Gomez, Matthew R.; Awe, Thomas J.; Stygar, William A.; Leeper, Ramon J.; Ruiz, Carlos L.; Chandler, Gordon A.; Mckenney, John M.; Owen, Albert C.; McKee, George R.; Matzen, M.K.; Leifeste, Gordon T.; Atherton, B.W.; Vesey, Roger A.; Smith, Ian C.; Geissel, Matthias G.; Rambo, Patrick K.; Sinars, Daniel S.; Sefkow, Adam B.; Rovang, Dean C.; Rochau, G.A.

Abstract not provided.

Total x-ray power improvement on recent wire array experiments on the Z machine

Jones, Michael J.; Ampleford, David A.; Cuneo, M.E.; Jennings, Christopher A.; Jones, Brent M.; Lopez, Mike R.; Rochau, G.A.; Savage, Mark E.

Recent experiments on the refurbished Z-machine were conducted using large diameter stainless steel arrays which produced x-ray powers of 260 TW. Follow-up experiments were then conducted utilizing tungsten wires with approximately the same total mass with the hypothesis that the total x-ray power would increase. On the large diameter tungsten experiments, the x-ray power averaged over 300 TW and the total x-ray energy was greater than 2MJ. Different analysis techniques for inferring the x-ray power will be described in detail.

More Details

Spectroscopic study of z-pinch stagnation on Z

Rochau, G.A.; Bailey, James E.; Coverdale, Christine A.; Ampleford, David A.; Cuneo, M.E.; Jones, Brent M.; Jennings, Christopher A.; Yu, Edmund Y.; Hansen, Stephanie B.

Fast z-pinches provide intense 1-10 keV photon energy radiation sources. Here, we analyze time-, space-, and spectrally-resolved {approx}2 keV K-shell emissions from Al (5% Mg) wire array implosions on Sandia's Z machine pulsed power driver. The stagnating plasma is modeled as three separate radial zones, and collisional-radiative modeling with radiation transport calculations are used to constrain the temperatures and densities in these regions, accounting for K-shell line opacity and Doppler effects. We discuss plasma conditions and dynamics at the onset of stagnation, and compare inferences from the atomic modeling to three-dimensional magneto-hydrodynamic simulations.

More Details

Doppler effects on 3-D non-LTE radiation transport and emission spectra

Hansen, Stephanie B.; Jones, Brent M.; Ampleford, David A.; Bailey, James E.; Rochau, G.A.; Coverdale, Christine A.; Jennings, Christopher A.; Cuneo, M.E.

Spatially and temporally resolved X-ray emission lines contain information about temperatures, densities, velocities, and the gradients in a plasma. Extracting this information from optically thick lines emitted from complex ions in dynamic, three-dimensional, non-LTE plasmas requires self-consistent accounting for both non-LTE atomic physics and non-local radiative transfer. We present a brief description of a hybrid-structure spectroscopic atomic model coupled to an iterative tabular on-the-spot treatment of radiative transfer that can be applied to plasmas of arbitrary material composition, conditions, and geometries. The effects of Doppler line shifts on the self-consistent radiative transfer within the plasma and the emergent emission and absorption spectra are included in the model. Sample calculations for a two-level atom in a uniform cylindrical plasma are given, showing reasonable agreement with more sophisticated transport models and illustrating the potential complexity - or richness - of radially resolved emission lines from an imploding cylindrical plasma. Also presented is a comparison of modeled L- and K-shell spectra to temporally and radially resolved emission data from a Cu:Ni plasma. Finally, some shortcomings of the model and possible paths for improvement are discussed.

More Details

Design of dynamic Hohlraum opacity samples to increase measured sample density on Z

Review of Scientific Instruments

Nash, Thomas J.; Rochau, G.A.; Bailey, James E.

We are attempting to measure the transmission of iron on Z at plasma temperatures and densities relevant to the solar radiation and convection zone boundary. The opacity data published by us to date has been taken at an electron density about a factor of 10 below the 9× 1022/cm3 electron density of this boundary. We present results of two-dimensional (2D) simulations of the heating and expansion of an opacity sample driven by the dynamic Hohlraum radiation source on Z. The aim of the simulations is to design foil samples that provide opacity data at increased density. The inputs or source terms for the simulations are spatially and temporally varying radiation temperatures with a Lambertian angular distribution. These temperature profiles were inferred on Z with on-axis time-resolved pinhole cameras, x-ray diodes, and bolometers. A typical sample is 0.3 μm of magnesium and 0.078 μm of iron sandwiched between 10 μm layers of plastic. The 2D LASNEX simulations indicate that to increase the density of the sample one should increase the thickness of the plastic backing. © 2010 American Institute of Physics.

More Details

Radiating shock measurements in the Z-pinch dynamic hohlraum

Physical Review Letters

Rochau, G.A.; Bailey, J.E.; Maron, Y.; Chandler, G.A.; Dunham, G.S.; Fisher, D.V.; Fisher, V.I.; Lemke, R.W.; MacFarlane, J.J.; Peterson, K.J.; Schroen, D.G.; Slutz, S.A.; Stambulchik, E.

The Z-pinch dynamic hohlraum is an x-ray source for high energy-density physics studies that is heated by a radiating shock to radiation temperatures >200eV. The time-dependent 300-400 eV electron temperature and 15-35mg/cc density of this shock have been measured for the first time using space-resolved Si tracer spectroscopy. The shock x-ray emission is inferred from these measurements to exceed 50 TW, delivering >180kJ to the hohlraum. © 2008 The American Physical Society.

More Details

Differential B-dot and D-dot monitors for current and voltage measurements on a 20-MA 3-MV pulsed-power accelerator

Proposed for publication in Physical Review Special Topics - Accelerators and Beams.

Stygar, William A.; Savage, Mark E.; Speas, Christopher S.; Struve, Kenneth W.; Donovan, Guy L.; Lee, James R.; Leeper, Ramon J.; Leifeste, Gordon T.; Mills, Jerry A.; Rochau, G.A.; Rochau, Gary E.

We have developed a system of differential-output monitors that diagnose current and voltage in the vacuum section of a 20-MA 3-MV pulsed-power accelerator. The system includes 62 gauges: 3 current and 6 voltage monitors that are fielded on each of the accelerator's 4 vacuum-insulator stacks, 6 current monitors on each of the accelerator's 4 outer magnetically insulated transmission lines (MITLs), and 2 current monitors on the accelerator's inner MITL. The inner-MITL monitors are located 6 cm from the axis of the load. Each of the stack and outer-MITL current monitors comprises two separate B-dot sensors, each of which consists of four 3-mm-diameter wire loops wound in series. The two sensors are separately located within adjacent cavities machined out of a single piece of copper. The high electrical conductivity of copper minimizes penetration of magnetic flux into the cavity walls, which minimizes changes in the sensitivity of the sensors on the 100-ns time scale of the accelerator's power pulse. A model of flux penetration has been developed and is used to correct (to first order) the B-dot signals for the penetration that does occur. The two sensors are designed to produce signals with opposite polarities; hence, each current monitor may be regarded as a single detector with differential outputs. Common-mode-noise rejection is achieved by combining these signals in a 50-{Omega} balun. The signal cables that connect the B-dot monitors to the balun are chosen to provide reasonable bandwidth and acceptable levels of Compton drive in the bremsstrahlung field of the accelerator. A single 50-{omega} cable transmits the output signal of each balun to a double-wall screen room, where the signals are attenuated, digitized (0.5-ns/sample), numerically compensated for cable losses, and numerically integrated. By contrast, each inner-MITL current monitor contains only a single B-dot sensor. These monitors are fielded in opposite-polarity pairs. The two signals from a pair are not combined in a balun; they are instead numerically processed for common-mode-noise rejection after digitization. All the current monitors are calibrated on a 76-cm-diameter axisymmetric radial transmission line that is driven by a 10-kA current pulse. The reference current is measured by a current-viewing resistor (CVR). The stack voltage monitors are also differential-output gauges, consisting of one 1.8-cm-diameter D-dot sensor and one null sensor. Hence, each voltage monitor is also a differential detector with two output signals, processed as described above. The voltage monitors are calibrated in situ at 1.5 MV on dedicated accelerator shots with a short-circuit load. Faraday's law of induction is used to generate the reference voltage: currents are obtained from calibrated outer-MITL B-dot monitors, and inductances from the system geometry. In this way, both current and voltage measurements are traceable to a single CVR. Dependable and consistent measurements are thus obtained with this system of calibrated diagnostics. On accelerator shots that deliver 22 MA to a low-impedance z-pinch load, the peak lineal current densities at the stack, outer-MITL, and inner-MITL monitor locations are 0.5, 1, and 58 MA/m, respectively. On such shots the peak currents measured at these three locations agree to within 1%.

More Details

Fusion-fission hybrids for nuclear waste transmutation : a synergistic step between Gen-IV fission and fusion reactors

Mehlhorn, Thomas A.; Cipiti, Benjamin B.; Rochau, G.A.

Energy demand and GDP per capita are strongly correlated, while public concern over the role of energy in climate change is growing. Nuclear power plants produce 16% of world electricity demands without greenhouse gases. Generation-IV advanced nuclear energy systems are being designed to be safe and economical. Minimizing the handling and storage of nuclear waste is important. NIF and ITER are bringing sustainable fusion energy closer, but a significant gap in fusion technology development remains. Fusion-fission hybrids could be a synergistic step to a pure fusion economy and act as a technology bridge. We discuss how a pulsed power-driven Z-pinch hybrid system producing only 20 MW of fusion yield can drive a sub-critical transuranic blanket that transmutes 1280 kg of actinide wastes per year and produces 3000 MW. These results are applicable to other inertial and magnetic fusion energy systems. A hybrid system could be introduced somewhat sooner because of the modest fusion yield requirements and can provide both a safe alternative to fast reactors for nuclear waste transmutation and a maturation path for fusion technology. The development and demonstration of advanced materials that withstand high-temperature, high-irradiation environments is a fundamental technology issue that is common to both fusion-fission hybrids and Generation-IV reactors.

More Details

Quantitative extraction of spectral line intensities and widths from x-ray spectra recorded with gated microchannel plate detectors

Review of Scientific Instruments

Dunham, Greg; Bailey, James E.; Rochau, G.A.; Lake, Patrick W.; Nielsen-Weber, L.B.

Plasma spectroscopy requires determination of spectral line intensities and widths. At Sandia National Laboratories Z facility we use elliptical crystal spectrometers equipped with gated microchannel plate detectors to record time and space resolved spectra. We collect a large volume of data typically consisting of five to six snapshots in time and five to ten spectral lines with 30 spatial elements per frame, totaling to more than 900 measurements per experiment. This large volume of data requires efficiency in processing. We have addressed this challenge by using a line fitting routine to automatically fit each spectrum using assumed line profiles and taking into account photoelectron statistics to efficiently extract line intensities and widths with uncertainties. We verified that the random data noise obeys Poisson statistics. Rescale factors for converting film exposure to effective counts required for understanding the photoelectron statistics are presented. An example of the application of these results to the analysis of spectra recorded in Z experiments is presented. © 2007 American Institute of Physics.

More Details

Wire initiation critical for radiation symmetry in Z-pinch-driven dynamic hohlraums

Physical Review Letters

Sanford, T.W.L.; Jennings, C.A.; Rochau, G.A.; Rosenthal, Stephen E.; Sarkisov, G.S.; Sasorov, P.V.; Stygar, William A.; Bennett, Lawrence F.; Bliss, David E.; Chittenden, J.P.; Cuneo, M.E.; Haines, M.G.; Leeper, Ramon J.; Mock, R.C.; Nash, Thomas J.; Peterson, D.L.

Axial symmetry in x-ray radiation of wire-array z pinches is important for the creation of dynamic hohlraums used to compress inertial-confinement-fusion capsules. We present the first evidence that this symmetry is directly correlated with the magnitude of the negative radial electric field along the wire surface. This field (in turn) is inferred to control the initial energy deposition into the wire cores, as well as any current shorting to the return conductor. © 2007 The American Physical Society.

More Details

Twin-elliptical-crystal time- and space-resolved soft x-ray spectrometer

Review of Scientific Instruments

Lake, Patrick W.; Bailey, James E.; Rochau, G.A.; Gard, P.; Petmecky, D.; Bump, M.; Joseph, N.R.; Moore, T.C.; Nielsen-Weber, L.B.

Elliptical crystal spectrometers equipped with time-gated microchannel plate (MCP) detectors provide time-, space-, and spectrally resolved data. A common problem is that the number of time resolution elements is limited by the number of MCP frames. The number of frames that fit on a given MCP is limited by the image size and the alignment tolerance. At the Z facility these problems have been addressed with twin-elliptical-crystal spectrometers. Using two crystals and detectors doubles the number of frames available. This enables measurements with ∼350 ps time resolution while still recording data from an ∼4 ns wide time window. Alternatively, the twin crystal design allows simultaneous measurements with different crystals to investigate different spectral regimes. © 2006 American Institute of Physics.

More Details
Results 201–250 of 256
Results 201–250 of 256