Dynamic hohlraum radiation hydrodynamics
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in the Journal of Quantitative Spectroscopy and Radiative Transfer.
A dynamic hohlraum is created when an annular z-pinch plasma implodes onto a cylindrical 0.014 g/cc 6-mm-diameter CH{sub 2} foam. The impact launches a radiating shock that propagates toward the axis at {approx}350 {micro}m/ns. The radiation trapped by the tungsten z-pinch plasma forms a {approx}200 eV hohlraum that provides X-rays for indirect drive inertial confinement fusion capsule implosion experiments. We are developing the ability to diagnose the hohlraum interior using emission and absorption spectroscopy of Si atoms added as a tracer to the central portion of the foam. Time- and space-resolved Si spectra are recorded with an elliptical crystal spectrometer viewing the cylindrical hohlraum end-on. A rectangular aperture at the end of the hohlraum restricts the field of view so that the 1D spectrometer resolution corresponds approximately to the hohlraum radial direction. This enables distinguishing between spectra from the unshocked radiation-heated foam and from the shocked foam. Typical spectral lines observed include the Si Ly{alpha} with its He-like satellites and the He-like resonance sequence including He{alpha}, He{beta}, and He{gamma}, along with some of their associated Li-like satellites. Work is in progress to infer the hohlraum conditions using collisional-radiative modeling that accounts for the radiation environment and includes both opacity effects and detailed Stark broadening calculations. These 6-mm-scale radiation-heated plasmas might eventually also prove suitable for testing Stark broadening line profile calculations or for opacity measurements.
Abstract not provided.
Journal of Quantitative Spectroscopy and Radiative Transfer
Laboratory measurements provide benchmark data for wavelength-dependent plasma opacities to assist inertial confinement fusion, astrophysics, and atomic physics research. There are several potential benefits to using z-pinch radiation for opacity measurements, including relatively large cm-scale lateral sample sizes and relatively-long 3-5 ns experiment durations. These features enhance sample uniformity. The spectrally resolved transmission through a CH-tamped NaBr foil was measured. The z-pinch produced the X-rays for both the heating source and backlight source. The (50+4) eV foil electron temperature and (3±1) × 1021 cm-3 foil electron density were determined by analysis of the Na absorption features. LTE and NLTE opacity model calculations of the n=2 to 3, 4 transitions in bromine ionized into the M-shell are in reasonably good agreement with the data.