Publications

Results 26–47 of 47
Skip to search filters

Sierra/SolidMechanics 5.0 User's Guide Addendum for Shock Capabilities

Beckwith, Frank B.; Bergel, Guy L.; de Frias, Gabriel J.; Manktelow, Kevin M.; Merewether, Mark T.; Miller, Scott T.; Mosby, Matthew D.; Plews, Julia A.; Porter, V.L.; Shelton, Timothy S.; Thomas, Jesse D.; Treweek, Benjamin T.; Tupek, Michael R.; Veilleux, Michael V.; Wagman, Ellen B.

This is an addendum to the Sierra/SolidMechanics 5.0 User’s Guide that documents additional capabilities available only in alternate versions of the Sierra/SolidMechanics (Sierra/SM) code. These alternate versions are enhanced to provide capabilities that are regulated under the U.S. Department of State’s International Traffic in Arms Regulations (ITAR) export control rules. The ITAR regulated codes are only distributed to entities that comply with the ITAR export control requirements. The ITAR enhancements to Sierra/SM include material models with an energy-dependent pressure response (appropriate for very large deformations and strain rates) and capabilities for blast modeling. This document is an addendum only; the standard Sierra/SolidMechanics 5.0 User’s Guide should be referenced for most general descriptions of code capability and use.

More Details

Sierra/SolidMechanics 5.0 Theory Manual

Beckwith, Frank B.; Bergel, Guy L.; de Frias, Gabriel J.; Manktelow, Kevin M.; Merewether, Mark T.; Miller, Scott T.; Mosby, Matthew D.; Plews, Julia A.; Porter, V.L.; Shelton, Timothy S.; Thomas, Jesse D.; Treweek, Benjamin T.; Tupek, Michael R.; Veilleux, Michael V.; Wagman, Ellen B.

Presented in this document are the theoretical aspects of capabilities contained in the Sierra/SM code. This manuscript serves as an ideal starting point for understanding the theoretical foundations of the code. For a comprehensive study of these capabilities, the reader is encouraged to explore the many references to scientific articles and textbooks contained in this manual. It is important to point out that some capabilities are still in development and may not be presented in this document. Further updates to this manuscript will be made as these capabilities come closer to production level.

More Details

Sierra/SolidMechanics 5.0 Example Problems Manual

Beckwith, Frank B.; Bergel, Guy L.; de Frias, Gabriel J.; Manktelow, Kevin M.; Merewether, Mark T.; Miller, Scott T.; Mosby, Matthew D.; Plews, Julia A.; Porter, V.L.; Shelton, Timothy S.; Thomas, Jesse D.; Treweek, Benjamin T.; Tupek, Michael R.; Veilleux, Michael V.; Wagman, Ellen B.

Presented in this document are tests that exist in the Sierra/SolidMechanics example problem suite, which is a subset of the Sierra / SM regression and performance test suite. These examples showcase common and advanced code capabilities. A wide variety of other regression and verification tests exist in the Sierra / SM test suite that are not included in this manual.

More Details

Sierra/SolidMechanics 5.0 Verification Tests Manual

Beckwith, Frank B.; Bergel, Guy L.; de Frias, Gabriel J.; Manktelow, Kevin M.; Merewether, Mark T.; Miller, Scott T.; Mosby, Matthew D.; Plews, Julia A.; Porter, V.L.; Shelton, Timothy S.; Thomas, Jesse D.; Treweek, Benjamin T.; Tupek, Michael R.; Veilleux, Michael V.; Wagman, Ellen B.

Presented in this document is a small portion of the tests that exist in the Sierra/SolidMechanics (Sierra/SM) verification test suite. Most of these tests are run nightly with the Sierra / SM code suite, and the results of the test are checked versus the correct analytical result. For each of the tests presented in this document, the test setup, a description of the analytic solution, and comparison of the Sierra / SM code results to the analytic solution is provided. Mesh convergence is also checked on a nightly basis for several of these tests. This document can be used to confirm that a given code capability is verified or referenced as a compilation of example problems. Additional example problems are provided in the Sierra/SM Example Problems Manual. Note, many other verification tests exist in the Sierra/SM test suite, but have not yet been included in this manual.

More Details

Sierra/SolidMechanics 5.0 Goodyear Specific

Beckwith, Frank B.; Bergel, Guy L.; de Frias, Gabriel J.; Manktelow, Kevin M.; Merewether, Mark T.; Miller, Scott T.; Mosby, Matthew D.; Plews, Julia A.; Porter, V.L.; Shelton, Timothy S.; Thomas, Jesse D.; Treweek, Benjamin T.; Tupek, Michael R.; Veilleux, Michael V.; Wagman, Ellen B.

Sierra/SolidMechanics (Sierra/SM) is a Lagrangian, three-dimensional finite element analysis code for solids and structures subjected to extensive contact and large deformations, encompassing explicit and implicit dynamic as well as quasistatic loading regimes. This document supplements the primary Sierra/SM 5.0 User’s Guide, describing capabilities specific to Goodyear analysis use cases, including additional implicit solver options, material models, finite element formulations, and contact settings.

More Details

Sierra/SolidMechanics 4.58 User's Guide Addendum for Shock Capabilities

Merewether, Mark T.; Treweek, Benjamin T.; Wagman, Ellen B.; Beckwith, Frank B.; de Frias, Gabriel J.; Koester, Jacob K.; Thomas, Jesse D.; Plews, Julia A.; Belcourt, Kenneth N.; Manktelow, Kevin M.; Mosby, Matthew D.; Veilleux, Michael V.; Tupek, Michael R.; Miller, Scott T.; Shelton, Timothy S.; Porter, V.L.; Gampert, Scott G.

This is an addendum to the Sierra/SolidMechanics 4.58 User's Guide that documents additional capabilities available only in alternate versions of the Sierra/SolidMechanics (Sierra/SM) code. These alternate versions are enhanced to provide capabilities that are regulated under the U.S. Department of State's International Traffic in Arms Regulations (ITAR) export control rules. The ITAR regulated codes are only distributed to entities that comply with the ITAR export control requirements. The ITAR enhancements to Sierra/SM include material models with an energy-dependent pressure response (appropriate for very large deformations and strain rates) and capabilities for blast modeling. This document is an addendum only; the standard Sierra/SolidMechanics 4.58 User's Guide should be referenced for most general descriptions of code capability and use.

More Details

Sierra/SolidMechanics 4.58. Capabilities In Development

Merewether, Mark T.; Treweek, Benjamin T.; Wagman, Ellen B.; Beckwith, Frank B.; de Frias, Gabriel J.; Koester, Jacob K.; Thomas, Jesse D.; Plews, Julia A.; Belcourt, Kenneth N.; Manktelow, Kevin M.; Mosby, Matthew D.; Veilleux, Michael V.; Tupek, Michael R.; Miller, Scott T.; Shelton, Timothy S.; Porter, V.L.; Gampert, Scott G.

This user’s guide documents capabilities in Sierra/SolidMechanics which remain “in-development” and thus are not tested and hardened to the standards of capabilities listed in Sierra/SM 4.58 User’s Guide. Capabilities documented herein are available in Sierra/SM for experimental use only until their official release. These capabilities include, but are not limited to, novel discretization approaches such as peridynamics and the reproducing kernel particle method (RKPM), numerical fracture and failure modeling aids such as the extended finite element method (XFEM) and /-integral, explicit time step control techniques, dynamic mesh rebalancing, as well as a variety of new material models and finite element formulations

More Details

Sierra/SolidMechanics 4.56 User's Guide: Addendum for Shock Capabilities

Merewether, Mark T.; Plews, Julia A.; de Frias, Gabriel J.; Mosby, Matthew D.; Porter, V.L.; Shelton, Timothy S.; Thomas, Jesse D.; Tupek, Michael R.; Veilleux, Michael V.; Manktelow, Kevin M.; Beckwith, Frank B.; Belcourt, Kenneth N.; Miller, Scott T.; Treweek, Benjamin T.; Wagman, Ellen B.; Koester, Jacob K.

This is an addendum to the Sierra/SolidMechanics 4.56 User's Guide that documents additional capabilities available only in alternate versions of the Sierra/SolidMechanics (Sierra/SM) code. These alternate versions are enhanced to provide capabilities that are regulated under the U.S. Department of State's International Traffic in Arms Regulations (ITAR) export control rules. The ITAR regulated codes are only distributed to entities that comply with the ITAR export control requirements. The ITAR enhancements to Sierra/SM include material models with an energy-dependent pressure response (appropriate for very large deformations and strain rates) and capabilities for blast modeling. This document is an addendum only; the standard Sierra/SolidMechanics 4.56 User's Guide should be referenced for most general descriptions of code capability and use.

More Details

Sierra/SolidMechanics 4.56 Capabilities In Development

Merewether, Mark T.; Plews, Julia A.; de Frias, Gabriel J.; Mosby, Matthew D.; Porter, V.L.; Shelton, Timothy S.; Thomas, Jesse D.; Tupek, Michael R.; Veilleux, Michael V.; Manktelow, Kevin M.; Beckwith, Frank B.; Belcourt, Kenneth N.; Miller, Scott T.; Treweek, Benjamin T.; Wagman, Ellen B.; Koester, Jacob K.

This user's guide documents capabilities in Sierra/SolidMechanics which remain "in-development" and thus are not tested and hardened to the standards of capabilities listed in Sierra/SM 4.56 User's Guide. Capabilities documented herein are available in Sierra/SM for experimental use only until their official release. These capabilities include, but are not limited to, novel discretization approaches such as peridynamics and the reproducing kernel particle method (RKPM), numerical fracture and failure modeling aids such as the extended finite element method (XFEM) and J-integral, explicit time step control techniques, dynamic mesh rebalancing, as well as a variety of new material models and finite element formulations.

More Details

Sierra/SolidMechanics 4.56 Theory Manual

Beckwith, Frank B.; Belcourt, Kenneth N.; de Frias, Gabriel J.; Koester, Jacob K.; Manktelow, Kevin M.; Merewether, Mark T.; Miller, Scott T.; Mosby, Matthew D.; Plews, Julia A.; Porter, V.L.; Shelton, Timothy S.; Thomas, Jesse T.; Treweek, Benjamin T.; Tupek, Michael R.; Veilleux, Michael V.; Wagman, Ellen B.

Presented in this document are the theoretical aspects of capabilities contained in the Sierra/SM code. This manuscript serves as an ideal starting point for understanding the theoretical foundations of the code. For a comprehensive study of these capabilities, the reader is encouraged to explore the many references to scientific articles and textbooks contained in this manual. It is important to point out that some capabilities are still in development and may not be presented in this document. Further updates to this manuscript will be made as these capabilities come closer to production level.

More Details

Sierra/SolidMechanics 4.56 Goodyear User's Guide

Merewether, Mark T.; Plews, Julia A.; de Frias, Gabriel J.; Mosby, Matthew D.; Porter, V.L.; Shelton, Timothy S.; Thomas, Jesse D.; Tupek, Michael R.; Veilleux, Michael V.; Manktelow, Kevin M.; Beckwith, Frank B.; Belcourt, Kenneth N.; Miller, Scott T.; Treweek, Benjamin T.; Wagman, Ellen B.; Koester, Jacob K.

Sierra/SolidMechanics (Sierra/SM) is a Lagrangian, three-dimensional finite element analysis code for solids and structures subjected to extensive contact and large deformations, encompassing explicit and implicit dynamic as well as quasistatic loading regimes. This document supplements the primary Sierra/SM 4.56 User’s Guide, describing capabilities specific to Goodyear analysis use cases, including additional implicit solver options, material models, finite element formulations, and contact settings.

More Details

Sierra/SolidMechanics 4.54 Example Problems Manual

Veilleux, Michael V.; Beckwith, Frank B.; Belcourt, Kenneth N.; de Frias, Gabriel J.; Manktelow, Kevin M.; Merewether, Mark T.; Miller, Scott T.; Mosby, Matthew D.; Plews, Julia A.; Porter, V.L.; Shelton, Timothy S.; Thomas, Jesse D.; Tupek, Michael R.

Presented in this document are tests that exist in the Sierra/SolidMechanics example problem suite, which is a subset of the Sierra/SM regression and performance test suite. These examples showcase common and advanced code capabilities. A wide variety of other regression and verification tests exist in the Sierra/SM test suite that are not included in this manual.

More Details

Sierra/SolidMechanics 4.54 Theory Manual

Veilleux, Michael V.; Beckwith, Frank B.; Belcourt, Kenneth N.; de Frias, Gabriel J.; Manktelow, Kevin M.; Merewether, Mark T.; Miller, Scott T.; Mosby, Matthew D.; Plews, Julia A.; Porter, V.L.; Shelton, Timothy S.; Thomas, Jesse D.; Tupek, Michael R.

Presented in this document are the theoretical aspects of capabilities contained in the Sierra/SM code. This manuscript serves as an ideal starting point for understanding the theoretical foundations of the code. For a comprehensive study of these capabilities, the reader is encouraged to explore the many references to scientific articles and textbooks contained in this manual. It is important to point out that some capabilities are still in development and may not be presented in this document. Further updates to this manuscript will be made as these capabilities come closer to production level.

More Details

Sierra/SolidMechanics 4.54 Goodyear Specific

Veilleux, Michael V.; Beckwith, Frank B.; Belcourt, Kenneth N.; de Frias, Gabriel J.; Manktelow, Kevin M.; Merewether, Mark T.; Miller, Scott T.; Mosby, Matthew D.; Plews, Julia A.; Porter, V.L.; Shelton, Timothy S.; Thomas, Jesse D.; Tupek, Michael R.

Sierra/SolidMechanics (Sierra/SM) is a Lagrangian, three-dimensional finite element analysis code for solids and structures subjected to extensive contact and large deformations, encompassing explicit and implicit dynamic as well as quasistatic loading regimes. This document supplements the primary Sierra/SM 4.54 User's Guide, describing capabilities specific to Goodyear analysis use cases, including additional implicit solver options, material models, finite element formulations, and contact settings.

More Details

Sierra/SolidMechanics 4.54 Verification Tests Manual

Veilleux, Michael V.; Beckwith, Frank B.; Belcourt, Kenneth N.; de Frias, Gabriel J.; Manktelow, Kevin M.; Merewether, Mark T.; Miller, Scott T.; Mosby, Matthew D.; Plews, Julia A.; Porter, V.L.; Shelton, Timothy S.; Thomas, Jesse D.; Tupek, Michael R.

Presented in this document is a small portion of the tests that exist in the Sierra/SolidMechanics (Sierra/SM) verification test suite. Most of these tests are run nightly with the Sierra/SM code suite, and the results of the test are checked versus the correct analytical result. For each of the tests presented in this document, the test setup, a description of the analytic solution, and comparison of the Sierra/SM code results to the analytic solution is provided. Mesh convergence is also checked on a nightly basis for several of these tests. This document can be used to confirm that a given code capability is verified or referenced as a compilation of example problems. Additional example problems are provided in the Sierra/SM Example Problems Manual. Note, many other verification tests exist in the Sierra/SM test suite, but have not yet been included in this manual.

More Details

Sierra/SolidMechanics 4.54. Capabilities in Development

Veilleux, Michael V.; Beckwith, Frank B.; Belcourt, Kenneth N.; de Frias, Gabriel J.; Manktelow, Kevin M.; Merewether, Mark T.; Miller, Scott T.; Mosby, Matthew D.; Plews, Julia A.; Porter, V.L.; Shelton, Timothy S.; Thomas, Jesse D.; Tupek, Michael R.

This user’s guide documents capabilities in Sierra/SolidMechanics which remain “in-development” and thus are not tested and hardened to the standards of capabilities listed in Sierra/SM 4.54 User’s Guide. Capabilities documented herein are available in Sierra/SM for experimental use only until their official release. These capabilities include, but are not limited to, novel discretization approaches such as peridynamics and the reproducing kernel particle method (RKPM), numerical fracture and failure modeling aids such as the extended finite element method (XFEM) and /-integral, explicit time step control techniques, dynamic mesh rebalancing, as well as a variety of new material models and finite element formulations.

More Details

Sierra/SolidMechanics 4.54 User's Guide: Addendum for Shock Capabilities

Veilleux, Michael V.; Beckwith, Frank B.; Belcourt, Kenneth N.; de Frias, Gabriel J.; Manktelow, Kevin M.; Merewether, Mark T.; Miller, Scott T.; Mosby, Matthew D.; Plews, Julia A.; Porter, V.L.; Shelton, Timothy S.; Thomas, Jesse D.; Tupek, Michael R.

This is an addendum to the Sierra/SolidMechanics 4.54 User's Guide that documents additional capabilities available only in alternate versions of the Sierra/SolidMechanics (Sierra/SM) code. These alternate versions are enhanced to provide capabilities that are regulated under the U.S. Department of State's International Traffic in Arms Regulations (ITAR) export control rules. The ITAR regulated codes are only distributed to entities that comply with the ITAR export control requirements. The ITAR enhancements to Sierra/SM include material models with an energy-dependent pressure response (appropriate for very large deformations and strain rates) and capabilities for blast modeling. This document is an addendum only; the standard Sierra/SolidMechanics 4.54 User's Guide should be referenced for most general descriptions of code capability and use.

More Details

Sierra/SolidMechanics 4.52 User's Guide: Addendum for Shock Capabilities

Beckwith, Frank B.; Belcourt, Kenneth N.; de Frias, Gabriel J.; Le, San L.; Manktelow, Kevin M.; Merewether, Mark T.; Mosby, Matthew D.; Plews, Julia A.; Porter, V.L.; Shelton, Timothy S.; Thomas, Jesse D.; Tupek, Michael R.; Veilleux, Michael V.; Xavier, Patrick G.

This is an addendum to the Sierra/SolidMechanics 4.52 User's Guide that documents additional capabilities available only in alternate versions of the Sierra/SolidMechanics (Sierra/SM) code. These alternate versions are enhanced to provide capabilities that are regulated under the U.S. Department of State's International Traffic in Arms Regulations (ITAR) export control rules. The ITAR regulated codes are only distributed to entities that comply with the ITAR export control requirements. The ITAR enhancements to Sierra/SM include material models with an energy-dependent pressure response (appropriate for very large deformations and strain rates) and capabilities for blast modeling. This document is an addendum only; the standard Sierra/SolidMechanics 4.52 User's Guide should be referenced for most general descriptions of code capability and use.

More Details

Sierra/RKPM: Current State and Applications

Koester, Jacob K.; Beckwith, Frank B.

The Reproducing Kernel Particle Method (RKPM), a meshfree method, has been implemented in Sandia's Sierra/SolidMechanics in a collaboration between Sandia and the University of California San Diego's Center for Extreme Events Research (UCSD/CEER). Meshfree methods, like RKPM, have an advantage over mesh-based methods, like the Finite Element Method (FEM), in applications where achieving or maintaining a quality mesh becomes burdensome or impractical. For example, using FEM for problems with very large deformations will result in poor element Jacobians which causes problems with the parametric mapping. RKPM constructs the approximation functions in the physical domain, circumventing the parametric mapping issue. Also, reconstructing the approximation functions at very large deformations is straight-forward. RKPM has an advantage over traditional meshfree methods such as Smoothed-Particle Hydrodynamics (SPH) due to its ability to reproduce linear or higher-order functions exactly. This removes the tensile instabilities that are present in SPH and allows preservation of angular momentum. The point of this memo is to explore the capabilities and limitations of the current implementation by testing it on three different applications: 1) a quasi-static ductile shearing problem 2) a dynamic concrete panel perforation problem and 3) a set of dynamic metal panel perforation problems. In summary, areas where RKPM appears to be a promising alternative to current methods have been identified. Also, outstanding inefficiencies and issues (bugs) with code are noted, ways to improve the capabilities using material from literature are mentioned and areas deserving of new research are highlighted.

More Details

Verification and large deformation analysis using the reproducing kernel particle method

Beckwith, Frank B.

The reproducing kernel particle method (RKPM) is a meshless method used to solve general boundary value problems using the principle of virtual work. RKPM corrects the kernel approximation by introducing reproducing conditions which force the method to be complete to arbritrary order polynomials selected by the user. Effort in recent years has led to the implementation of RKPM within the Sierra/SM physics software framework. The purpose of this report is to investigate convergence of RKPM for verification and validation purposes as well as to demonstrate the large deformation capability of RKPM in problems where the finite element method is known to experience difficulty. Results from analyses using RKPM are compared against finite element analysis. A host of issues associated with RKPM are identified and a number of potential improvements are discussed for future work.

More Details
Results 26–47 of 47
Results 26–47 of 47