Publications

Results 26–50 of 57
Skip to search filters

Particle resuspension simulation capability to substantiate DOE-HDBK-3010 Data

Transactions of the American Nuclear Society

Voskuilen, Tyler V.; Pierce, Flint P.; Brown, Alexander B.; Gelbard, Fred G.; Louie, David L.

In this work we have presented a particle resuspension model implemented in the SNL code SIERRA/Fuego, which can be used to model particle dispersal and resuspension from surfaces. The method demonstrated is applicable to a class of particles, but would require additional parametric fits or physics models for extension to other applications, such as wetted particles or walls. We have demonstrated the importance of turbulent variations in the wall shear stress when considering resuspension, and implemented both shear stress variation models and stochastic resuspension models (not shown in this work). These models can be used in simulations with of physically realistic scenarios to augment lab-scale DOE Handbook data for airborne release fractions and respirable fractions in order to provide confidences for safety analysts and facility designers to apply in their analyses at DOE sites. Future work on this topic will involve validation of the presented model against experimental data and extension of the empirical models to be applicable to different classes of particles and surfaces.

More Details

Addressing Modeling Requirements for Radiation Heat Transfer

Tencer, John T.; Akau, Ronald L.; Dobranich, Dean D.; Brown, Alexander B.; Dodd, Amanda B.; Hogan, Roy E.; Okusanya, Tolulope O.; Phinney, Leslie M.; Pierce, Flint P.

Thermal analysts address a wide variety of applications requiring the simulation of radiation heat transfer phenomena. The re are gaps in the currently available modeling capabilities. Addressing these gaps w ould allow for the consideration of additional physics and increase confidence in simulation predictions. This document outlines a five year plan to address the current and future needs of the analyst community with regards to modeling radiation heat tran sfer processes. This plan represents a significant multi - year effort that must be supported on an ongoing basis.

More Details

Particle dynamics modeling methods for colloid suspensions

Computational Particle Mechanics

Bolintineanu, Dan S.; Grest, Gary S.; Lechman, Jeremy B.; Pierce, Flint P.; Plimpton, Steven J.; Schunk, Randy

We present a review and critique of several methods for the simulation of the dynamics of colloidal suspensions at the mesoscale. We focus particularly on simulation techniques for hydrodynamic interactions, including implicit solvents (Fast Lubrication Dynamics, an approximation to Stokesian Dynamics) and explicit/particle-based solvents (Multi-Particle Collision Dynamics and Dissipative Particle Dynamics). Several variants of each method are compared quantitatively for the canonical system of monodisperse hard spheres, with a particular focus on diffusion characteristics, as well as shear rheology and microstructure. In all cases, we attempt to match the relevant properties of a well-characterized solvent, which turns out to be challenging for the explicit solvent models. Reasonable quantitative agreement is observed among all methods, but overall the Fast Lubrication Dynamics technique shows the best accuracy and performance. We also devote significant discussion to the extension of these methods to more complex situations of interest in industrial applications, including models for non-Newtonian solvent rheology, non-spherical particles, drying and curing of solvent and flows in complex geometries. This work identifies research challenges and motivates future efforts to develop techniques for quantitative, predictive simulations of industrially relevant colloidal suspension processes.

More Details

Computational Mechanics for Heterogeneous Materials

Baczewski, Andrew D.; Yarrington, Cole Y.; Bond, Stephen D.; Erikson, William W.; Lehoucq, Richard B.; Mondy, L.A.; Noble, David R.; Pierce, Flint P.; Roberts, Christine C.; Van Swol, Frank

The subject of this work is the development of models for the numerical simulation of matter, momentum, and energy balance in heterogeneous materials. These are materials that consist of multiple phases or species or that are structured on some (perhaps many) scale(s). By computational mechanics we mean to refer generally to the standard type of modeling that is done at the level of macroscopic balance laws (mass, momentum, energy). We will refer to the flow or flux of these quantities in a generalized sense as transport. At issue here are the forms of the governing equations in these complex materials which are potentially strongly inhomogeneous below some correlation length scale and are yet homogeneous on larger length scales. The question then becomes one of how to model this behavior and what are the proper multi-scale equations to capture the transport mechanisms across scales. To address this we look to the area of generalized stochastic process that underlie the transport processes in homogeneous materials. The archetypal example being the relationship between a random walk or Brownian motion stochastic processes and the associated Fokker-Planck or diffusion equation. Here we are interested in how this classical setting changes when inhomogeneities or correlations in structure are introduced into the problem. Aspects of non-classical behavior need to be addressed, such as non-Fickian behavior of the mean-squared-displacement (MSD) and non-Gaussian behavior of the underlying probability distribution of jumps. We present an experimental technique and apparatus built to investigate some of these issues. We also discuss diffusive processes in inhomogeneous systems, and the role of the chemical potential in diffusion of hard spheres is considered. Also, the relevance to liquid metal solutions is considered. Finally we present an example of how inhomogeneities in material microstructure introduce fluctuations at the meso-scale for a thermal conduction problem. These fluctuations due to random microstructures also provide a means of characterizing the aleatory uncertainty in material properties at the mesoscale.

More Details

Evidence of soot superaggregates in a turbulent pool fire

Combustion and Flame

Kearney, Sean P.; Pierce, Flint P.

We report experimental observations of extremely large, 10-100μm, soot aggregates in a blended methanol/toluene fueled turbulent pool fire, which are believed to be the first observation of " superaggregates" in a turbulent flame. Laser-induced incandescence images of soot volume concentration, at the center of the fire plume and at a height within the active flaming region, reveal the appearance of large-scale particle-like features across a broad range of apparent volume fraction, which emit at an intensity that is comparable with that of the laser-heated soot particles. We argue that the features in the incandescence images result from very large soot aggregates. This observation is supported by scanning electron microscope imaging of extracted soot that reveals large soot structures composed of much smaller chains of individual primary particles. Analysis of the soot aggregate structure from the electron-microscope images reveals a 1.8 fractal dimension at micron scales, comparable with commonly reported soot aggregate sizes from hydrocarbon flames. At larger scales of 10s of microns, comparable with the total aggregate size, a larger volume-filling fractal dimension of 2.5-2.6 is observed. This type of fractal structure is consistent with reported, but apparently rare, observations of soot superaggregates in heavily sooting laboratory laminar diffusion flames, but is encountered in the much larger meter-scale pool fire at much lower soot volume concentrations. © 2012 The Combustion Institute.

More Details

First-principles flocculation as the key to low energy algal biofuels processing

Hewson, John C.; Mondy, L.A.; Murton, Jaclyn K.; O'Hern, Timothy J.; Parchert, Kylea J.; Pohl, Phillip I.; Williams, Cecelia V.; Wyatt, Nicholas B.; Barringer, David A.; Pierce, Flint P.; Brady, Patrick V.; Dwyer, Brian P.; Grillet, Anne M.; Hankins, M.G.; Hughes, Lindsey G.; Lechman, Jeremy B.

This document summarizes a three year Laboratory Directed Research and Development (LDRD) program effort to improve our understanding of algal flocculation with a key to overcoming harvesting as a techno-economic barrier to algal biofuels. Flocculation is limited by the concentrations of deprotonated functional groups on the algal cell surface. Favorable charged groups on the surfaces of precipitates that form in solution and the interaction of both with ions in the water can favor flocculation. Measurements of algae cell-surface functional groups are reported and related to the quantity of flocculant required. Deprotonation of surface groups and complexation of surface groups with ions from the growth media are predicted in the context of PHREEQC. The understanding of surface chemistry is linked to boundaries of effective flocculation. We show that the phase-space of effective flocculation can be expanded by more frequent alga-alga or floc-floc collisions. The collision frequency is dependent on the floc structure, described in the fractal sense. The fractal floc structure is shown to depend on the rate of shear mixing. We present both experimental measurements of the floc structure variation and simulations using LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator). Both show a densification of the flocs with increasing shear. The LAMMPS results show a combined change in the fractal dimension and a change in the coordination number leading to stronger flocs.

More Details
Results 26–50 of 57
Results 26–50 of 57