Inertia Estimation in Power Systems using Energy Storage and System Identification Techniques
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
2020 IEEE Power and Energy Society Innovative Smart Grid Technologies Conference, ISGT 2020
Forced oscillations in power systems are of particular interest when they interact and reinforce inter-area oscillations. This paper determines how a previously proposed inter-area damping controller mitigates forced oscillations. The damping controller modulates active power on the Pacific DC Intertie (PDCI) based on phasor measurement units (PMU) frequency measurements. The primary goal of the controller is to improve the small signal stability of the north south B mode in the North American Western Interconnection (WI). The paper presents small signal stability analysis in a reduced order system, time-domain simulations of a detailed representation of the WI and actual system test results to demonstrate that the PDCI damping controller provides effective damping to forced oscillations in the frequency range below 1 Hz.
Proceedings of the Annual Hawaii International Conference on System Sciences
With increasing availability of synchrophasor technology, enabled by phasor measurement units (PMUs), applications based on this technology are being implemented as a practical approach for power systems monitoring and control. While synchrophasor data provides significant advantages over SCADA data it has limitations, especially in the area of model validation and estimation. With the increasing complexity of the power system, the need for equipment monitoring and performance evaluation becomes more relevant, traditionally model validation and estimation process can be used to look at control equipment performance. However, due to the challenges associated with these processes there are limitations on the performance evaluation. This work introduces am improved signal-processing based algorithm to monitor control system performance during disturbance events in the power system and during ambient conditions, or normal power system operation, additionally the algorithm is demonstrated on data obtained from the interconnection point of a STATCOM device and a synchronous generator during ambient and disturbance operation.
Abstract not provided.
Abstract not provided.
Abstract not provided.
51st North American Power Symposium, NAPS 2019
This paper analyzes how two Kalman Filter (KF) based frequency estimation algorithms react to phase steps. It is demonstrated that phase steps are interpreted as sharp changes in frequency. The paper studies whether the location of the phase step, within the sinusoidal waveform, has any effect on the frequency estimate. Because phase steps are not the product of a permanent change in the underlying frequency, the paper proposes an algorithm to correct frequency estimates deemed erroneous. The algorithm makes use of the residual of the KF to determine when an estimate is incorrect and to trigger a corrective action in which the frequency estimate is replaced by an average of the previous values that were considered accurate. Using synthesized and simulated data with distortions the paper shows the effectiveness of the correction algorithm in fixing frequency estimates.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
IEEE Transactions on Power Systems
This paper describes the design and implementation of a proof-of-concept Pacific dc Intertie (PDCI) wide area damping controller and includes system test results on the North American Western Interconnection (WI). To damp inter-area oscillations, the controller modulates the power transfer of the PDCI, a ±500 kV dc transmission line in the WI. The control system utilizes real-time phasor measurement unit (PMU) feedback to construct a commanded power signal which is added to the scheduled power flow for the PDCI. After years of design, simulations, and development, this controller has been implemented in hardware and successfully tested in both open and closed-loop operation. The most important design specifications were safe, reliable performance, no degradation of any system modes in any circumstances, and improve damping to the controllable modes in the WI. The main finding is that the controller adds significant damping to the modes of the WI and does not adversely affect the system response in any of the test cases. The primary contribution of this paper, to the state of the art research, is the design methods and test results of the first North American real-time control system that uses wide area PMU feedback.
Abstract not provided.
IEEE Power and Energy Society General Meeting
This paper explores the revenue potential for electric storage resources (ESRs), also referred to as electrical energy storage, in the Southwest Power Pool Integrated Marketplace. In particular, opportunities in the day-ahead market with the energy and frequency regulation products are considered. The revenue maximization problem is formulated as a linear program model, where an ESR seeks to maximize its revenue through the available revenue streams. The ESR has perfect foresight of historical prices and determines the optimal policy accordingly. A case study using FY2018 data shows that frequency regulation services are the most lucrative for revenue potential. This paper also explores different methods of using area control error data to infer the regulation control signal and the consequent effect on the optimization. Finally, the paper conducts a sensitivity analysis of ESR payback period to energy capacity and power rating.
Abstract not provided.
Abstract not provided.
2019 IEEE Milan PowerTech, PowerTech 2019
With increasing availability of synchrophasor technology, enabled by phasor measurement units (PMUs), applications based on this technology are being implemented as a practical approach for power systems monitoring and control. While synchrophasor data provides significant advantages over SCADA data it has limitations especially in the area of model validation and estimation. With the increasing complexity of the power system, the need for equipment monitoring and performance evaluation becomes more relevant. Traditionally model validation and estimation process can be used to look at control equipment performance. However, due to the challenges associated with these processes there are limitations on the performance evaluation. This work expands a previously introduced algorithm to monitor control system performance to allow the algorithm to work under power system ambient and disturbance conditions. Additionally the algorithm is demonstrated on data obtained from the interconnection point of a STATCOM device during ambient and disturbance operation.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.