Publications

Results 101–125 of 164
Skip to search filters

HyRAM: A methodology and toolkit for quantitative risk assessment of hydrogen systems

International Journal of Hydrogen Energy

Groth, Katrina G.; Hecht, Ethan S.

HyRAM is a methodology and accompanying software toolkit being developed to provide a platform for integration of state-of-the-art, validated science and engineering models and data relevant to hydrogen safety. The HyRAM software toolkit establishes a standard methodology for conducting quantitative risk assessment (QRA) and consequence analysis relevant to assessing the safety of hydrogen fueling and storage infrastructure. The HyRAM toolkit integrates fast-running deterministic and probabilistic models for quantifying risk of accident scenarios, for predicting physical effects, and for characterizing the impact of hydrogen hazards (thermal effects from jet fires, thermal and pressure effects from deflagrations and detonations in enclosures). HyRAM 1.0 incorporates generic probabilities for equipment failures for nine types of hydrogen system components, generic probabilities for hydrogen ignition, and probabilistic models for the impact of heat flux and pressure on humans and structures. These are combined with fast-running, computationally and experimentally validated models of hydrogen release and flame behavior. HyRAM can be extended in scope via user-contributed models and data. The QRA approach in HyRAM can be used for multiple types of analyses, including codes and standards development, code compliance, safety basis development, and facility safety planning. This manuscript discusses the current status and vision for HyRAM.

More Details

Comparison of conventional vs. modular hydrogen refueling stations and on-site production vs. delivery

Hecht, Ethan S.; Pratt, Joseph W.

To meet the needs of public and private stakeholders involved in the development, construction, and operation of hydrogen fueling stations needed to support the widespread roll-out of hydrogen fuel cell electric vehicles, this work presents publicly available station templates and analyses. These ‘Reference Stations’ help reduce the cost and speed the deployment of hydrogen stations by providing a common baseline with which to start a design, enable quick assessment of potential sites for a hydrogen station, identify contributors to poor economics, and suggest areas of research. This work presents layouts, bills of materials, piping and instrumentation diagrams, and detailed analyses of five new station designs. In the near term, delivered hydrogen results in a lower cost of hydrogen compared to on-site production via steam methane reforming or electrolysis, although the on-site production methods have other advantages. Modular station concepts including on-site production can reduce lot sizes from conventional assemble-on-site stations.

More Details

Comparison of conventional vs. modular hydrogen refueling stations, and on-site production vs. delivery

Hecht, Ethan S.; Pratt, Joseph W.

To meet the needs of public and private stakeholders involved in the development, construction, and operation of hydrogen fueling stations needed to support the widespread roll-out of hydrogen fuel cell electric vehicles, this work presents publicly available station templates and analyses. These 'Reference Stations' help reduce the cost and speed the deployment of hydrogen stations by providing a common baseline with which to start a design, enable quick assessment of potential sites for a hydrogen station, identify contributors to poor economics, and suggest areas of research. This work presents layouts, bills of materials, piping and instrumentation diagrams, and detailed analyses of five new station designs. In the near term, delivered hydrogen results in a lower cost of hydrogen compared to on-site production via steam methane reforming or electrolysis, although the on-site production methods have other advantages. Modular station concepts including on-site production can reduce lot sizes from conventional assemble-on-site stations.

More Details

Methodology for assessing the safety of Hydrogen Systems: HyRAM 1.1 technical reference manual

Groth, Katrina G.; Hecht, Ethan S.; Reynolds, John T.; Blaylock, Myra L.; Carrier, Erin E.

The HyRAM software toolkit provides a basis for conducting quantitative risk assessment and consequence modeling for hydrogen infrastructure and transportation systems. HyRAM is designed to facilitate the use of state-of-the-art science and engineering models to conduct robust, repeatable assessments of hydrogen safety, hazards, and risk. HyRAM is envisioned as a unifying platform combining validated, analytical models of hydrogen behavior, a stan- dardized, transparent QRA approach, and engineering models and generic data for hydrogen installations. HyRAM is being developed at Sandia National Laboratories for the U. S. De- partment of Energy to increase access to technical data about hydrogen safety and to enable the use of that data to support development and revision of national and international codes and standards. This document provides a description of the methodology and models contained in the HyRAM version 1.1. HyRAM 1.1 includes generic probabilities for hydrogen equipment fail- ures, probabilistic models for the impact of heat flux on humans and structures, and computa- tionally and experimentally validated analytical and first order models of hydrogen release and flame physics. HyRAM 1.1 integrates deterministic and probabilistic models for quantifying accident scenarios, predicting physical effects, and characterizing hydrogen hazards (thermal effects from jet fires, overpressure effects from deflagrations), and assessing impact on people and structures. HyRAM is a prototype software in active development and thus the models and data may change. This report will be updated at appropriate developmental intervals.

More Details

Ignition and flame characteristics of cryogenic hydrogen releases

International Journal of Hydrogen Energy

Panda, Pratikash P.; Hecht, Ethan S.

In this work, under-expanded cryogenic hydrogen jets were investigated experimentally for their ignition and flame characteristics. The test facility described herein, was designed and constructed to release hydrogen at a constant temperature and pressure, to study the dispersion and thermo-physical properties of cryogenic hydrogen releases and flames. In this study, a non-intrusive laser spark focused on the jet axis was used to measure the maximum ignition distance. The radiative power emitted by the corresponding jet flames was also measured for a range of release scenarios from 37 K to 295 K, 2–6 barabsthrough nozzles with diameters from 0.75 to 1.25 mm. The maximum ignition distance scales linearly with the effective jet diameter (which scales as the square root of the stagnant fluid density). A 1-dimensional (stream-wise) cryogenic hydrogen release model developed previously at Sandia National Laboratories (although this model is not yet validated for cryogenic hydrogen) was exercised to predict that the mean mole fraction at the maximum ignition distance is approximately 0.14, and is not dependent on the release conditions. The flame length and width were extracted from visible and infra-red flame images for several test cases. The flame length and width both scale as the square root of jet exit Reynolds number, as reported in the literature for flames from atmospheric temperature hydrogen. As shown in previous studies for ignited atmospheric temperature hydrogen, the radiative power from the jet flames of cold hydrogen scales as a logarithmic function of the global flame residence time. The radiative heat flux from jet flames of cold hydrogen is higher than the jet flames of atmospheric temperature hydrogen, for a given mass flow rate, due to the lower choked flow velocity of low-temperature hydrogen. This study provides critical information with regard to the development of models to inform the safety codes and standards of hydrogen infrastructure.

More Details

Validation and uncertainty quantification analysis (VUQ) of a char oxidation model

10th U.S. National Combustion Meeting

Díaz-Ibarra, Oscar; Spinti, Jennifer; Smith, Philip; Shaddix, Christopher R.; Hecht, Ethan S.

The Reacting Particle and Boundary Layer (RPBL) model computes the transient-state conditions for a spherical, reacting, porous char particle and its reacting boundary layer. RPBL computes the transport of gaseous species with a Maxwell-Stefan multicomponent approach. Mass transfer diffusion coefficients are corrected to account for a non-stagnant bulk flow condition using a factor based on the Sherwood number. The homogeneous gas phase reactions are modeled with a syngas mechanism, and the heterogeneous reactions are calculated with a six-step reaction mechanism. Both homogeneous and heterogeneous reaction mechanisms are implemented in Cantera. Carbon density (burnout) is computed using the Bhatia and Perlmutter model to estimate the evolution of the specific surface area. Energy equations are solved for the gas temperature and the particle temperature. The physical properties of the particle are computed from the fractions of ash, carbon, and voids in the particle. The void fraction is computed assuming a constant diameter particle during the reaction process. RPBL solves a particle momentum equation in order to estimate the position of the particle in a specific reactor. We performed a validation and uncertainty quantification study with RPBL using experimental char oxidation data obtained in an optically accessible, laminar, entrained flow reactor at Sandia National Laboratories. We used a consistency analysis to compare RPBL and experimental data (with its associated uncertainty) for three coal chars over a range of particle sizes. We found consistency for particle temperature and velocity across all experiments.

More Details

HySafe research priorities workshop report Summary of the workshop organized in cooperation with US DOE and supported by EC JRC in Washington DC November 10-11 2014

Keller, Jay K.; Hill, Laura H.; Kiuru, Kristian K.; Groth, Katrina G.; Hecht, Ethan S.; James, Will J.

The HySafe research priorities workshop is held on the even years between the International Conference on Hydrogen Safety (ICHS) which is held on the odd years. The research priorities workshop is intended to identify the state-of-the-art in understanding of the physical behavior of hydrogen and hydrogen systems with a focus on safety. Typical issues addressed include behavior of unintended hydrogen releases, transient combustion phenomena, effectiveness of mitigation measures, and hydrogen effects in materials. In the workshop critical knowledge gaps are identified. Areas of research and coordinated actions for the near and medium term are derived and prioritized from these knowledge gaps. The stimulated research helps pave the way for the rapid and safe deployment of hydrogen technologies on a global scale. To support the idea of delivering globally accepted research priorities for hydrogen safety the workshop is organized as an internationally open meeting. In attendance are stakeholders from the academic community (universities, national laboratories), funding agencies, and industry. The industry participation is critically important to ensure that the research priorities align with the current needs of the industry responsible for the deployment of hydrogen technologies. This report presents the results of the HySafe Research Priorities Workshop held in Washing- ton, D.C. on November 10-11, 2014. At the workshop the participants presented updates (since the previous workshop organized two years before in Berlin, Germany) of their research and development work on hydrogen safety. Following the workshop, participants were asked to provide feedback on high-priority topics for each of the research areas discussed and to rank research area categories and individual research topics within these categories. The research areas were ranked as follows (with the percentage of the vote in parenthesis): 1. Quantitative Risk Assessment (QRA) Tools (23%) 2. Reduced Model Tools (15%) 3. Indoor (13%) 4. Unintended Release-Liquid (11%) 5. Unintended Release-Gas (8%) 6. Storage (8%) 7. Integration Platforms (7%) 8. Hydrogen Safety Training (7%) 9. Materials Compatibility/Sensors (7%) 10. Applications (2%) The workshop participants ranked the need for Quantitative Risk Analysis (QRA) tools as the top priority by a large margin. QRA tools enable an informed expert to quantify the risk asso- ciated with a particular hydrogen system in a particular scenario. With appropriate verification and validation such tools will enable: * system designers to achieve a desired level of risk with suitable risk mitigation strategies, * permitting officials to determine if a particular system installation meets the desired risk level (performance based Regulations, Codes, and Standards (RCS) rather than prescrip- tive RCS), and * allow code developers to develop code language based on rigorous and validated physical models, statistics and standardized QRA methodologies. Another important research topic identified is the development of validated reduced physical models for use in the QRA tools. Improvement of the understanding and modeling of specific release phenomena, in particular liquid releases, are also highly ranked research topics. Acknowledgement The International Association HySafe, represented here by the authors, would like to thank all participants of the workshop for their valuable contributions. Particularly appreciated is the active participation of the industry representatives and the steady support by the European Com- mission's Joint Research Centre (JRC). Deep gratitude is owed for the great support by the United States Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy's Fuel Cell Technologies Office (EERE/FCTO) for the organization of the 2014 version of the hydrogen safety research priorities workshop. This page intentionally left blank.

More Details

Methodology for assessing the safety of Hydrogen Systems: HyRAM 1.0 technical reference manual

Groth, Katrina G.; Hecht, Ethan S.; Reynolds, John T.

The HyRAM software toolkit provides a basis for conducting quantitative risk assessment and consequence modeling for hydrogen infrastructure and transportation systems. HyRAM is designed to facilitate the use of state-of-the-art science and engineering models to conduct robust, repeatable assessments of hydrogen safety, hazards, and risk. HyRAM is envisioned as a unifying platform combining validated, analytical models of hydrogen behavior, a standardized, transparent QRA approach, and engineering models and generic data for hydrogen installations. HyRAM is being developed at Sandia National Laboratories for the U. S. Department of Energy to increase access to technical data about hydrogen safety and to enable the use of that data to support development and revision of national and international codes and standards. This document provides a description of the methodology and models contained in the HyRAM version 1.0. HyRAM 1.0 includes generic probabilities for hydrogen equipment failures, probabilistic models for the impact of heat flux on humans and structures, and computationally and experimentally validated analytical and first order models of hydrogen release and flame physics. HyRAM 1.0 integrates deterministic and probabilistic models for quantifying accident scenarios, predicting physical effects, and characterizing hydrogen hazards (thermal effects from jet fires, overpressure effects from deflagrations), and assessing impact on people and structures. HyRAM is a prototype software in active development and thus the models and data may change. This report will be updated at appropriate developmental intervals.

More Details
Results 101–125 of 164
Results 101–125 of 164