Characteristic of cryogenic hydrogen flames from high-aspect ratio nozzles
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
International Journal of Hydrogen Energy
The development and revision of safety codes and standards for hydrogen infrastructure requires a solid scientific basis, including studies of unignited releases from high pressure systems for various scenarios. Most hydrogen releases are modeled as axisymmetric jets, but real leaks are more likely to be non-axisymmetric jets issuing from high aspect ratio cracks or slots. In the present study, underexpanded hydrogen jets from square and rectangular nozzles with aspect ratios of 1–16 were numerically modeled for stagnation pressures up to 20 MPa. The near and far flow fields were modeled separately using two sequential computational domains to accurately and efficiently capture the flow characteristics. The numerical models were first validated with experimental data from a previous experimental study and literature data. The mass fraction and velocity distributions show that the centerline decay rates increase as the nozzle aspect ratio increases, but this increase is dependent on the pressure. This means that the canonical decay law of round turbulent jets and plumes no longer applies to the slot nozzle jets for high pressures. The radial profiles collapse onto a Gaussian curve in the major axis plane, but neither collapse, nor are they Gaussian in the minor axis plane with peaks away from the jet centerline. Different shock patterns were identified along the major and minor axes and the axis switching phenomenon seen in the literature was also reproduced. The axis switching resulted in significantly wider flattened concentration distributions compared with the axisymmetric jet which may require consideration during safety analyses for non-circular nozzles. A scaling factor taking both the nozzle shape and pressure effects into account was then developed to better scale the centerline decay rates for jets from both the square and rectangular nozzles. The present study demonstrates that the nozzle shape effects on the jet spreading should not be overlooked and proper scaling factors are required to collapse the data and calculate decay rates.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
DOE has identified consistent safety, codes, and standards as a critical need for the deployment of hydrogen technologies, with key barriers related to the availability and implementation of technical information in the development of regulations, codes, and standards. Advances in codes and standards have been enabled by risk-informed approaches to create and implement revisions to codes, such as National Fire Protection Association (NFPA) 2, NFPA 55, and International Organization for Standardization (ISO) Technical Specification (TS)-19880-1. This project provides the technical basis for these revisions, enabling the assessment of the safety of hydrogen fuel cell systems and infrastructure using QRA and physics-based models of hydrogen behavior. The risk and behavior tools that are developed in this project are motivated by, shared directly with, and used by the committees revising relevant codes and standards, thus forming the scientific basis to ensure that code requirements are consistent, logical, and defensible.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
2018 Spring Technical Meeting of the Western States Section of the Combustion Institute, WSSCI 2018
Apparent char kinetic rates are commonly used to predict pulverized coal char burning rates. These kinetic rates quantify the char burning rate based on the temperature of the particle and the oxygen concentration at the particle surface, thereby inherently neglecting the impact of variations in the penetration of oxygen into the char on the predicted burning rate. To investigate the impact of variable extents of penetration during Zone II burning conditions, experimental measurements were performed of char particle combustion temperature and burnout for a common U.S. subbituminous coal burning in an optical laminar entrained flow reactor with either helium or nitrogen diluents. The combination of much higher thermal conductivity and mass diffusivity in the helium environments resulted in substantially cooler char combustion temperatures than in equivalent N2 environments. Measured char burnout was similar in the two environments for a given bulk oxygen concentration but was approximately 60% higher in helium environments for a given char combustion temperature. Detailed particle simulations of the experimental conditions confirmed a 60% higher burning rate in the helium environments as a function of char temperature, whereas catalyst theory predicts that the burning rate in helium could be as high as 90% greater than in nitrogen, in the limit of large Thiele modulus (i.e. near the diffusion limit). For application combustion in CO2 environments (e.g. for oxy-fuel combustion), these results demonstrate that due to differences in oxygen diffusivity the apparent char oxidation rates will be lower, but by no more than 9% relative to burning rates measured in nitrogen environments.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.