Publications

Results 101–132 of 132
Skip to search filters

Xyce parallel electronic simulator release notes

Keiter, Eric R.; Santarelli, Keith R.; Hoekstra, Robert J.; Russo, Thomas V.; Schiek, Richard S.; Mei, Ting M.; Thornquist, Heidi K.; Pawlowski, Roger P.; Coffey, Todd S.

The Xyce Parallel Electronic Simulator has been written to support, in a rigorous manner, the simulation needs of the Sandia National Laboratories electrical designers. Specific requirements include, among others, the ability to solve extremely large circuit problems by supporting large-scale parallel computing platforms, improved numerical performance and object-oriented code design and implementation. The Xyce release notes describe: Hardware and software requirements New features and enhancements Any defects fixed since the last release Current known defects and defect workarounds For up-to-date information not available at the time these notes were produced, please visit the Xyce web page at http://www.cs.sandia.gov/xyce.

More Details

Parallel algorithm strategies for circuit simulation

Keiter, Eric R.; Thornquist, Heidi K.; Schiek, Richard S.

Circuit simulation tools (e.g., SPICE) have become invaluable in the development and design of electronic circuits. However, they have been pushed to their performance limits in addressing circuit design challenges that come from the technology drivers of smaller feature scales and higher integration. Improving the performance of circuit simulation tools through exploiting new opportunities in widely-available multi-processor architectures is a logical next step. Unfortunately, not all traditional simulation applications are inherently parallel, and quickly adapting mature application codes (even codes designed to parallel applications) to new parallel paradigms can be prohibitively difficult. In general, performance is influenced by many choices: hardware platform, runtime environment, languages and compilers used, algorithm choice and implementation, and more. In this complicated environment, the use of mini-applications small self-contained proxies for real applications is an excellent approach for rapidly exploring the parameter space of all these choices. In this report we present a multi-core performance study of Xyce, a transistor-level circuit simulation tool, and describe the future development of a mini-application for circuit simulation.

More Details

Xyce parallel electronic simulator : users' guide. Version 5.1

Keiter, Eric R.; Mei, Ting M.; Russo, Thomas V.; Pawlowski, Roger P.; Schiek, Richard S.; Santarelli, Keith R.; Coffey, Todd S.; Thornquist, Heidi K.

This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: (1) Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). Note that this includes support for most popular parallel and serial computers. (2) Improved performance for all numerical kernels (e.g., time integrator, nonlinear and linear solvers) through state-of-the-art algorithms and novel techniques. (3) Device models which are specifically tailored to meet Sandia's needs, including some radiation-aware devices (for Sandia users only). (4) Object-oriented code design and implementation using modern coding practices that ensure that the Xyce Parallel Electronic Simulator will be maintainable and extensible far into the future. Xyce is a parallel code in the most general sense of the phrase - a message passing parallel implementation - which allows it to run efficiently on the widest possible number of computing platforms. These include serial, shared-memory and distributed-memory parallel as well as heterogeneous platforms. Careful attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows. The development of Xyce provides a platform for computational research and development aimed specifically at the needs of the Laboratory. With Xyce, Sandia has an 'in-house' capability with which both new electrical (e.g., device model development) and algorithmic (e.g., faster time-integration methods, parallel solver algorithms) research and development can be performed. As a result, Xyce is a unique electrical simulation capability, designed to meet the unique needs of the laboratory.

More Details

Xyce™ Parallel Electronic Simulator: Reference Guide, Version 5.1

Keiter, Eric R.; Mei, Ting M.; Russo, Thomas V.; Pawlowski, Roger P.; Schiek, Richard S.; Santarelli, Keith R.; Coffey, Todd S.; Thornquist, Heidi K.

This document is a reference guide to the Xyce Parallel Electronic Simulator, and is a companion document to the Xyce Users’ Guide. The focus of this document is (to the extent possible) exhaustively list device parameters, solver options, parser options, and other usage details of Xyce. This document is not intended to be a tutorial. Users who are new to circuit simulation are better served by the Xyce Users’ Guide.

More Details

Improving performance via mini-applications

Doerfler, Douglas W.; Crozier, Paul C.; Edwards, Harold C.; Williams, Alan B.; Rajan, Mahesh R.; Keiter, Eric R.; Thornquist, Heidi K.

Application performance is determined by a combination of many choices: hardware platform, runtime environment, languages and compilers used, algorithm choice and implementation, and more. In this complicated environment, we find that the use of mini-applications - small self-contained proxies for real applications - is an excellent approach for rapidly exploring the parameter space of all these choices. Furthermore, use of mini-applications enriches the interaction between application, library and computer system developers by providing explicit functioning software and concrete performance results that lead to detailed, focused discussions of design trade-offs, algorithm choices and runtime performance issues. In this paper we discuss a collection of mini-applications and demonstrate how we use them to analyze and improve application performance on new and future computer platforms.

More Details

Xyce Parallel Electronic Simulator : reference guide, version 4.1

Keiter, Eric R.; Mei, Ting M.; Russo, Thomas V.; Pawlowski, Roger P.; Schiek, Richard S.; Santarelli, Keith R.; Coffey, Todd S.; Thornquist, Heidi K.

This document is a reference guide to the Xyce Parallel Electronic Simulator, and is a companion document to the Xyce Users Guide. The focus of this document is (to the extent possible) exhaustively list device parameters, solver options, parser options, and other usage details of Xyce. This document is not intended to be a tutorial. Users who are new to circuit simulation are better served by the Xyce Users Guide.

More Details

Xyce Parallel Electronic Simulator : users' guide, version 4.1

Keiter, Eric R.; Mei, Ting M.; Russo, Thomas V.; Pawlowski, Roger P.; Schiek, Richard S.; Santarelli, Keith R.; Coffey, Todd S.; Thornquist, Heidi K.

This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: (1) Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). Note that this includes support for most popular parallel and serial computers. (2) Improved performance for all numerical kernels (e.g., time integrator, nonlinear and linear solvers) through state-of-the-art algorithms and novel techniques. (3) Device models which are specifically tailored to meet Sandia's needs, including some radiation-aware devices (for Sandia users only). (4) Object-oriented code design and implementation using modern coding practices that ensure that the Xyce Parallel Electronic Simulator will be maintainable and extensible far into the future. Xyce is a parallel code in the most general sense of the phrase - a message passing parallel implementation - which allows it to run efficiently on the widest possible number of computing platforms. These include serial, shared-memory and distributed-memory parallel as well as heterogeneous platforms. Careful attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows. The development of Xyce provides a platform for computational research and development aimed specifically at the needs of the Laboratory. With Xyce, Sandia has an 'in-house' capability with which both new electrical (e.g., device model development) and algorithmic (e.g., faster time-integration methods, parallel solver algorithms) research and development can be performed. As a result, Xyce is a unique electrical simulation capability, designed to meet the unique needs of the laboratory.

More Details

Xyce Parallel Electronic Simulator - Users' Guide Version 2.1

Hutchinson, Scott A.; Keiter, Eric R.; Hoekstra, Robert J.; Russo, Thomas V.; Rankin, Eric R.; Pawlowski, Roger P.; Fixel, Deborah A.; Schiek, Richard S.; Bogdan, Carolyn W.

This manual describes the use of theXyceParallel Electronic Simulator.Xycehasbeen designed as a SPICE-compatible, high-performance analog circuit simulator, andhas been written to support the simulation needs of the Sandia National Laboratorieselectrical designers. This development has focused on improving capability over thecurrent state-of-the-art in the following areas:%04Capability to solve extremely large circuit problems by supporting large-scale par-allel computing platforms (up to thousands of processors). Note that this includessupport for most popular parallel and serial computers.%04Improved performance for all numerical kernels (e.g., time integrator, nonlinearand linear solvers) through state-of-the-art algorithms and novel techniques.%04Device models which are specifically tailored to meet Sandia's needs, includingmany radiation-aware devices.3 XyceTMUsers' Guide%04Object-oriented code design and implementation using modern coding practicesthat ensure that theXyceParallel Electronic Simulator will be maintainable andextensible far into the future.Xyceis a parallel code in the most general sense of the phrase - a message passingparallel implementation - which allows it to run efficiently on the widest possible numberof computing platforms. These include serial, shared-memory and distributed-memoryparallel as well as heterogeneous platforms. Careful attention has been paid to thespecific nature of circuit-simulation problems to ensure that optimal parallel efficiencyis achieved as the number of processors grows.The development ofXyceprovides a platform for computational research and de-velopment aimed specifically at the needs of the Laboratory. WithXyce, Sandia hasan %22in-house%22 capability with which both new electrical (e.g., device model develop-ment) and algorithmic (e.g., faster time-integration methods, parallel solver algorithms)research and development can be performed. As a result,Xyceis a unique electricalsimulation capability, designed to meet the unique needs of the laboratory.4 XyceTMUsers' GuideAcknowledgementsThe authors would like to acknowledge the entire Sandia National Laboratories HPEMS(High Performance Electrical Modeling and Simulation) team, including Steve Wix, CarolynBogdan, Regina Schells, Ken Marx, Steve Brandon and Bill Ballard, for their support onthis project. We also appreciate very much the work of Jim Emery, Becky Arnold and MikeWilliamson for the help in reviewing this document.Lastly, a very special thanks to Hue Lai for typesetting this document with LATEX.TrademarksThe information herein is subject to change without notice.Copyrightc 2002-2003 Sandia Corporation. All rights reserved.XyceTMElectronic Simulator andXyceTMtrademarks of Sandia Corporation.Orcad, Orcad Capture, PSpice and Probe are registered trademarks of Cadence DesignSystems, Inc.Silicon Graphics, the Silicon Graphics logo and IRIX are registered trademarks of SiliconGraphics, Inc.Microsoft, Windows and Windows 2000 are registered trademark of Microsoft Corporation.Solaris and UltraSPARC are registered trademarks of Sun Microsystems Corporation.Medici, DaVinci and Taurus are registered trademarks of Synopsys Corporation.HP and Alpha are registered trademarks of Hewlett-Packard company.Amtec and TecPlot are trademarks of Amtec Engineering, Inc.Xyce's expression library is based on that inside Spice 3F5 developed by the EECS De-partment at the University of California.All other trademarks are property of their respective owners.ContactsBug Reportshttp://tvrusso.sandia.gov/bugzillaEmailxyce-support%40sandia.govWorld Wide Webhttp://www.cs.sandia.gov/xyce5 XyceTMUsers' GuideThis page is left intentionally blank6

More Details

Sensitivity technologies for large scale simulation

Bartlett, Roscoe B.; Collis, Samuel S.; Keiter, Eric R.; Ober, Curtis C.

Sensitivity analysis is critically important to numerous analysis algorithms, including large scale optimization, uncertainty quantification,reduced order modeling, and error estimation. Our research focused on developing tools, algorithms and standard interfaces to facilitate the implementation of sensitivity type analysis into existing code and equally important, the work was focused on ways to increase the visibility of sensitivity analysis. We attempt to accomplish the first objective through the development of hybrid automatic differentiation tools, standard linear algebra interfaces for numerical algorithms, time domain decomposition algorithms and two level Newton methods. We attempt to accomplish the second goal by presenting the results of several case studies in which direct sensitivities and adjoint methods have been effectively applied, in addition to an investigation of h-p adaptivity using adjoint based a posteriori error estimation. A mathematical overview is provided of direct sensitivities and adjoint methods for both steady state and transient simulations. Two case studies are presented to demonstrate the utility of these methods. A direct sensitivity method is implemented to solve a source inversion problem for steady state internal flows subject to convection diffusion. Real time performance is achieved using novel decomposition into offline and online calculations. Adjoint methods are used to reconstruct initial conditions of a contamination event in an external flow. We demonstrate an adjoint based transient solution. In addition, we investigated time domain decomposition algorithms in an attempt to improve the efficiency of transient simulations. Because derivative calculations are at the root of sensitivity calculations, we have developed hybrid automatic differentiation methods and implemented this approach for shape optimization for gas dynamics using the Euler equations. The hybrid automatic differentiation method was applied to a first order approximation of the Euler equations and used as a preconditioner. In comparison to other methods, the AD preconditioner showed better convergence behavior. Our ultimate target is to perform shape optimization and hp adaptivity using adjoint formulations in the Premo compressible fluid flow simulator. A mathematical formulation for mixed-level simulation algorithms has been developed where different physics interact at potentially different spatial resolutions in a single domain. To minimize the implementation effort, explicit solution methods can be considered, however, implicit methods are preferred if computational efficiency is of high priority. We present the use of a partial elimination nonlinear solver technique to solve these mixed level problems and show how these formulation are closely coupled to intrusive optimization approaches and sensitivity analyses. Production codes are typically not designed for sensitivity analysis or large scale optimization. The implementation of our optimization libraries into multiple production simulation codes in which each code has their own linear algebra interface becomes an intractable problem. In an attempt to streamline this task, we have developed a standard interface between the numerical algorithm (such as optimization) and the underlying linear algebra. These interfaces (TSFCore and TSFCoreNonlin) have been adopted by the Trilinos framework and the goal is to promote the use of these interfaces especially with new developments. Finally, an adjoint based a posteriori error estimator has been developed for discontinuous Galerkin discretization of Poisson's equation. The goal is to investigate other ways to leverage the adjoint calculations and we show how the convergence of the forward problem can be improved by adapting the grid using adjoint-based error estimates. Error estimation is usually conducted with continuous adjoints but if discrete adjoints are available it may be possible to reuse the discrete version for error estimation. We investigate the advantages and disadvantages of continuous and discrete adjoints through a simple example.

More Details

Xyce Parallel Electronic Simulator : users' guide, version 2.0

Keiter, Eric R.; Hutchinson, Scott A.; Hoekstra, Robert J.; Russo, Thomas V.; Rankin, Eric R.; Pawlowski, Roger P.; Wix, Steven D.; Fixel, Deborah A.

This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator capable of simulating electrical circuits at a variety of abstraction levels. Primarily, Xyce has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability the current state-of-the-art in the following areas: {sm_bullet} Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). Note that this includes support for most popular parallel and serial computers. {sm_bullet} Improved performance for all numerical kernels (e.g., time integrator, nonlinear and linear solvers) through state-of-the-art algorithms and novel techniques. {sm_bullet} Device models which are specifically tailored to meet Sandia's needs, including many radiation-aware devices. {sm_bullet} A client-server or multi-tiered operating model wherein the numerical kernel can operate independently of the graphical user interface (GUI). {sm_bullet} Object-oriented code design and implementation using modern coding practices that ensure that the Xyce Parallel Electronic Simulator will be maintainable and extensible far into the future. Xyce is a parallel code in the most general sense of the phrase - a message passing of computing platforms. These include serial, shared-memory and distributed-memory parallel implementation - which allows it to run efficiently on the widest possible number parallel as well as heterogeneous platforms. Careful attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows. One feature required by designers is the ability to add device models, many specific to the needs of Sandia, to the code. To this end, the device package in the Xyce These input formats include standard analytical models, behavioral models look-up Parallel Electronic Simulator is designed to support a variety of device model inputs. tables, and mesh-level PDE device models. Combined with this flexible interface is an architectural design that greatly simplifies the addition of circuit models. One of the most important feature of Xyce is in providing a platform for computational research and development aimed specifically at the needs of the Laboratory. With Xyce, Sandia now has an 'in-house' capability with which both new electrical (e.g., device model development) and algorithmic (e.g., faster time-integration methods) research and development can be performed. Ultimately, these capabilities are migrated to end users.

More Details

Xyce Parallel Electronic Simulator : reference guide, version 2.0

Keiter, Eric R.; Hutchinson, Scott A.; Hoekstra, Robert J.; Russo, Thomas V.; Rankin, Eric R.; Pawlowski, Roger P.; Fixel, Deborah A.; Wix, Steven D.

This document is a reference guide to the Xyce Parallel Electronic Simulator, and is a companion document to the Xyce Users' Guide. The focus of this document is (to the extent possible) exhaustively list device parameters, solver options, parser options, and other usage details of Xyce. This document is not intended to be a tutorial. Users who are new to circuit simulation are better served by the Xyce Users' Guide.

More Details

Xyce parallel electronic simulator design : mathematical formulation, version 2.0

Keiter, Eric R.; Hutchinson, Scott A.; Hoekstra, Robert J.; Russo, Thomas V.

This document is intended to contain a detailed description of the mathematical formulation of Xyce, a massively parallel SPICE-style circuit simulator developed at Sandia National Laboratories. The target audience of this document are people in the role of 'service provider'. An example of such a person would be a linear solver expert who is spending a small fraction of his time developing solver algorithms for Xyce. Such a person probably is not an expert in circuit simulation, and would benefit from an description of the equations solved by Xyce. In this document, modified nodal analysis (MNA) is described in detail, with a number of examples. Issues that are unique to circuit simulation, such as voltage limiting, are also described in detail.

More Details

The two-level Newton method and its application to electronic simulation

Keiter, Eric R.; Hutchinson, Scott A.; Hoekstra, Robert J.; Russo, Thomas V.; Rankin, Eric R.

Coupling between transient simulation codes of different fidelity can often be performed at the nonlinear solver level, if the time scales of the two codes are similar. A good example is electrical mixed-mode simulation, in which an analog circuit simulator is coupled to a PDE-based semiconductor device simulator. Semiconductor simulation problems, such as single-event upset (SEU), often require the fidelity of a mesh-based device simulator but are only meaningful when dynamically coupled with an external circuit. For such problems a mixed-level simulator is desirable, but the two types of simulation generally have different (somewhat conflicting) numerical requirements. To address these considerations, we have investigated variations of the two-level Newton algorithm, which preserves tight coupling between the circuit and the PDE device, while optimizing the numerics for both. The research was done within Xyce, a massively parallel electronic simulator under development at Sandia National Laboratories.

More Details

Computational Algorithms for Device-Circuit Coupling

Keiter, Eric R.; Keiter, Eric R.; Hutchinson, Scott A.; Hoekstra, Robert J.; Rankin, Eric R.; Russo, Thomas V.; Waters, Lon J.

Circuit simulation tools (e.g., SPICE) have become invaluable in the development and design of electronic circuits. Similarly, device-scale simulation tools (e.g., DaVinci) are commonly used in the design of individual semiconductor components. Some problems, such as single-event upset (SEU), require the fidelity of a mesh-based device simulator but are only meaningful when dynamically coupled with an external circuit. For such problems a mixed-level simulator is desirable, but the two types of simulation generally have different (sometimes conflicting) numerical requirements. To address these considerations, we have investigated variations of the two-level Newton algorithm, which preserves tight coupling between the circuit and the partial differential equations (PDE) device, while optimizing the numerics for both.

More Details

Xyce Parallel Electronic Simulator - User's Guide, Version 1.0

Hutchinson, Scott A.; Keiter, Eric R.; Hoekstra, Robert J.; Waters, Lon J.; Russo, Thomas V.; Rankin, Eric R.; Wix, Steven D.

This manual describes the use of the Xyce Parallel Electronic Simulator code for simulating electrical circuits at a variety of abstraction levels. The Xyce Parallel Electronic Simulator has been written to support,in a rigorous manner, the simulation needs of the Sandia National Laboratories electrical designers. As such, the development has focused on improving the capability over the current state-of-the-art in the following areas: (1) Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). Note that this includes support for most popular parallel and serial computers. (2) Improved performance for all numerical kernels (e.g., time integrator, nonlinear and linear solvers) through state-of-the-art algorithms and novel techniques. (3) A client-server or multi-tiered operating model wherein the numerical kernel can operate independently of the graphical user interface (GUI). (4) Object-oriented code design and implementation using modern coding-practices that ensure that the Xyce Parallel Electronic Simulator will be maintainable and extensible far into the future. The code is a parallel code in the most general sense of the phrase--a message passing parallel implementation--which allows it to run efficiently on the widest possible number of computing platforms. These include serial, shared-memory and distributed-memory parallel as well as heterogeneous platforms. Furthermore, careful attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved even as the number of processors grows. Another feature required by designers is the ability to add device models, many specific to the needs of Sandia, to the code. To this end, the device package in the Xyce Parallel Electronic Simulator is designed to support a variety of device model inputs. These input formats include standard analytical models, behavioral models and look-up tables. Combined with this flexible interface is an architectural design that greatly simplifies the addition of circuit models. One of the most important contribution Xyce makes to the designers at Sandia National Laboratories is in providing a platform for computational research and development aimed specifically at the needs of the Laboratory. With Xyce, Sandia now has an ''in-house''capability with which both new electrical (e.g., device model development) and algorithmic (e.g., faster time-integration methods) research and development can be performed. Furthermore, these capabilities will then be migrated to the end users.

More Details

The Xyce Parallel Electronic Simulator - An Overview

Hutchinson, Scott A.; Keiter, Eric R.; Hoekstra, Robert J.; Watts, Herman A.; Waters, Lon J.; Schells, Regina L.; Wix, Steven D.

The Xyce{trademark} Parallel Electronic Simulator has been written to support the simulation needs of the Sandia National Laboratories electrical designers. As such, the development has focused on providing the capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). In addition, they are providing improved performance for numerical kernels using state-of-the-art algorithms, support for modeling circuit phenomena at a variety of abstraction levels and using object-oriented and modern coding-practices that ensure the code will be maintainable and extensible far into the future. The code is a parallel code in the most general sense of the phrase--a message passing parallel implementation--which allows it to run efficiently on the widest possible number of computing platforms. These include serial, shared-memory and distributed-memory parallel as well as heterogeneous platforms. Furthermore, careful attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved even as the number of processors grows.

More Details
Results 101–132 of 132
Results 101–132 of 132