Publications

Results 76–100 of 133
Skip to search filters

The oxidation of aluminum at high temperature studied by Thermogravimetric Analysis and Differential Scanning Calorimetry

Coker, Eric N.

The oxidation in air of high-purity Al foil was studied as a function of temperature using Thermogravimetric Analysis with Differential Scanning Calorimetry (TGA/DSC). The rate and/or extent of oxidation was found to be a non-linear function of the temperature. Between 650 and 750 ÀC very little oxidation took place; at 850 ÀC oxidation occurred after an induction period, while at 950 ÀC oxidation occurred without an induction period. At oxidation temperatures between 1050 and 1150 ÀC rapid passivation of the surface of the aluminum foil occurred, while at 1250 ÀC and above, an initial rapid mass increase was observed, followed by a more gradual increase in mass. The initial rapid increase was accompanied by a significant exotherm. Cross-sections of oxidized specimens were characterized by scanning electron microscopy (SEM); the observed alumina skin thicknesses correlated qualitatively with the observed mass increases.

More Details

Using in-situ techniques to probe high-temperature reactions: Thermochemical cycles for the production of synthetic fuels from CO2 and water

Powder Diffraction

Coker, Eric N.; Rodriguez, Marko A.; Ambrosini, Andrea A.; Miller, James E.; Stechel, Ellen B.

Ferrites are promising materials for enabling solar-thermochemical cycles. Such cycles utilize solar-thermal energy to reduce the metal oxide, which is then re-oxidized by H2O or CO2, producing H2 or CO, respectively. Mixing ferrites with zirconia or yttria-stabilized zirconia (YSZ) greatly improves their cyclabilities. In order to understand this system, we have studied the behavior of iron oxide/8YSZ (8 mol-% Y2O3 in ZrO2) using in situ X-ray diffraction and thermogravimetric analyses at temperatures up to 1500 °C and under controlled atmosphere. The solubility of iron oxide in 8YSZ measured by XRD at room temperature was 9.4 mol-% Fe. The solubility increased to at least 10.4 mol-% Fe when heated between 800 and 1000 °C under inert atmosphere. Furthermore iron was found to migrate in and out of the 8YSZ phase as the temperature and oxidation state of the iron changed. In samples containing >9.4 mol-% Fe, stepwise heating to 1400 °C under helium caused reduction of Fe2O3 to Fe3O4 to FeO. Exposure of the FeO-containing material to CO2 at 1100 °C re-oxidized FeO to Fe3O4 with evolution of CO. Thermogravimetric analysis during thermochemical cycling of materials with a range of iron contents showed that samples with mostly dissolved iron utilized a greater proportion of the iron atoms present than did samples possessing a greater fraction of un-dissolved iron oxides.© 2012 JCPDS-ICDD.

More Details

Reimagining liquid transportation fuels : sunshine to petrol

Allendorf, Mark D.; Staiger, Chad S.; Ambrosini, Andrea A.; Chen, Ken S.; Coker, Eric N.; Dedrick, Daniel E.; Hogan, Roy E.; Ermanoski, Ivan E.; Johnson, Terry A.; McDaniel, Anthony H.

Two of the most daunting problems facing humankind in the twenty-first century are energy security and climate change. This report summarizes work accomplished towards addressing these problems through the execution of a Grand Challenge LDRD project (FY09-11). The vision of Sunshine to Petrol is captured in one deceptively simple chemical equation: Solar Energy + xCO{sub 2} + (x+1)H{sub 2}O {yields} C{sub x}H{sub 2x+2}(liquid fuel) + (1.5x+.5)O{sub 2} Practical implementation of this equation may seem far-fetched, since it effectively describes the use of solar energy to reverse combustion. However, it is also representative of the photosynthetic processes responsible for much of life on earth and, as such, summarizes the biomass approach to fuels production. It is our contention that an alternative approach, one that is not limited by efficiency of photosynthesis and more directly leads to a liquid fuel, is desirable. The development of a process that efficiently, cost effectively, and sustainably reenergizes thermodynamically spent feedstocks to create reactive fuel intermediates would be an unparalleled achievement and is the key challenge that must be surmounted to solve the intertwined problems of accelerating energy demand and climate change. We proposed that the direct thermochemical conversion of CO{sub 2} and H{sub 2}O to CO and H{sub 2}, which are the universal building blocks for synthetic fuels, serve as the basis for this revolutionary process. To realize this concept, we addressed complex chemical, materials science, and engineering problems associated with thermochemical heat engines and the crucial metal-oxide working-materials deployed therein. By project's end, we had demonstrated solar-driven conversion of CO{sub 2} to CO, a key energetic synthetic fuel intermediate, at 1.7% efficiency.

More Details

Synthesis and characterization of supported ferrites for thermochemical CO 2 splitting using concentrated solar energy

ACS National Meeting Book of Abstracts

Ambrosini, Andrea; Coker, Eric N.; Rodriguez, Marko A.; Ohlhausen, J.A.; Miller, James E.; Stechel-Speicher, Ellen B.

The Sunshine to Petrol effort at Sandia National Laboratories aims to convert CO 2 and water to liquid hydrocarbon fuel precursors using concentrated solar energy with redox-active metal oxide systems, such as ferrites: Fe 3O 4→3FeO+ 0.5O 2 (>1350°C) 3FeO + CO 2→Fe 3O 4 + CO (<1200°C). However, the ferrite materials are not repeatedly reactive on their own and require a support, such as yttria-stabilized zirconia (YSZ). The ferrite-support interaction is not well defined, as there has been little fundamental characterization of these oxides at the high temperatures and conditions present in these cycles. We have investigated the microstructure, structure-property relationships, and the role of the support on redox behavior of the ferrite composites. In-situ capabilities to elucidate chemical reactions under operating conditions have been developed. The synthesis, structural characterization (room and high- temperature x-ray diffraction, secondary ion mass spectroscopy, scanning electron microscopy), and thermogravimetric analysis of YSZ-supported ferrites will be discussed.

More Details

Confined cooperative self-assembly and synthesis of optically and electrically active nanostructures : final LDRD report

Coker, Eric N.; Huang, Jian Y.; Rodriguez, Marko A.

In this project, we developed a confined cooperative self-assembly process to synthesize one-dimensional (1D) j-aggregates including nanowires and nanorods with controlled diameters and aspect ratios. The facile and versatile aqueous solution process assimilates photo-active macrocyclic building blocks inside surfactant micelles, forming stable single-crystalline high surface area nanoporous frameworks with well-defined external morphology defined by the building block packing. Characterizations using TEM, SEM, XRD, N{sub 2} and NO sorption isotherms, TGA, UV-vis spectroscopy, and fluorescence imaging and spectroscopy indicate that the j-aggregate nanostructures are monodisperse and may further assemble into hierarchical arrays with multi-modal functional pores. The nanostructures exhibit enhanced and collective optical properties over the individual chromophores. This project was a small footprint research effort which, nonetheless, produced significant progress towards both the stated goal as well as unanticipated research directions.

More Details
Results 76–100 of 133
Results 76–100 of 133