Publications

Results 51–75 of 132
Skip to search filters

Deep Borehole Disposal Safety Case

Freeze, Geoffrey A.; Stein, Emily S.; Brady, Patrick V.; Lopez, Carlos M.; Sassani, David C.; Travel, Karl T.; Gibb, Fergus G.

This report describes the current status of the safety case for the deep borehole disposal (DBD) concept. It builds on the safety case presented in Freeze et al. (2016), presenting new information and identifying additional information needs for specific safety case elements. At this preliminary phase of development, the DBD safety case focuses on the generic feasibility of the DBD concept. It is based on potential system designs, waste forms, engineering, and geologic conditions; however, no specific site or regulatory framework exists. Updated information is provided for the following safety case elements: * pre-closure basis and safety analysis, * post-closure basis and performance assessment, and * confidence enhancement. This research was performed as part of the deep borehole field test (DBFT). Based on revised U.S. Department of Energy (DOE) priorities in mid-2017, the DBFT and other research related to a DBD option was discontinued; ongoing work and documentation were closed out by the end of fiscal year (FY) 2017. This report was initiated as part of the DBFT and documented as an incomplete draft at the end of FY 2017. The report was finalized by Sandia National Laboratories in FY2018 without DOE funding, subsequent to the termination of the DBFT, and published in FY2019. iii

More Details

Post-Closure performance assessment for deep borehole disposal of Cs/Sr capsules

Energies

Freeze, Geoffrey A.; Stein, Emily S.; Brady, Patrick V.

Post-closure performance assessment (PA) calculations suggest that deep borehole disposal of cesium (Cs)/strontium (Sr) capsules, a U.S. Department of Energy (DOE) waste form (WF), is safe, resulting in no releases to the biosphere over 10,000,000 years when the waste is placed in a 3-5 km deep waste disposal zone. The same is true when a hypothetical breach of a stuck waste package (WP) is assumed to occur at much shallower depths penetrated by through-going fractures. Cs and Sr retardation in the host rock is a key control over movement. Calculated borehole performance would be even stronger if credit was taken for the presence of the WP.

More Details

Benchmarking and QA testing in PFLOTRAN

International High-Level Radioactive Waste Management 2019, IHLRWM 2019

LaForce, Tara; Frederick, Jennifer M.; Hammond, Glenn E.; Stein, Emily S.; Mariner, Paul E.

PFLOTRAN is well-established in single-phase reactive transport problems, and current research is expanding its visibility and capability in two-phase subsurface problems. A critical part of the development of simulation software is quality assurance (QA). The purpose of the present work is QA testing to verify the correct implementation and accuracy of two-phase flow models in PFLOTRAN. An important early step in QA is to verify the code against exact solutions from the literature. In this work a series of QA tests on models that have known analytical solutions are conducted using PFLOTRAN. In each case the simulated saturation profile is rigorously shown to converge to the exact analytical solution. These results verify the accuracy of PFLOTRAN for use in a wide variety of two-phase modelling problems with a high degree of nonlinearity in the interaction between phase behavior and fluid flow.

More Details

Methods of sensitivity analysis in geologic disposal safety assessment (GDSA) framework

International High-Level Radioactive Waste Management 2019, IHLRWM 2019

Stein, Emily S.; Swiler, Laura P.; Sevougian, Stephen D.

Probabilistic simulations of the post-closure performance of a generic deep geologic repository for commercial spent nuclear fuel in shale host rock provide a test case for comparing sensitivity analysis methods available in Geologic Disposal Safety Assessment (GDSA) Framework, the U.S. Department of Energy's state-of-the-art toolkit for repository performance assessment. Simulations assume a thick low-permeability shale with aquifers (potential paths to the biosphere) above and below the host rock. Multi-physics simulations on the 7-million-cell grid are run in a high-performance computing environment with PFLOTRAN. Epistemic uncertain inputs include properties of the engineered and natural systems. The output variables of interest, maximum I-129 concentrations (independent of time) at observation points in the aquifers, vary over several orders of magnitude. Variance-based global sensitivity analyses (i.e., calculations of sensitivity indices) conducted with Dakota use polynomial chaos expansion (PCE) and Gaussian process (GP) surrogate models. Results of analyses conducted with raw output concentrations and with log-transformed output concentrations are compared. Using log-transformed concentrations results in larger sensitivity indices for more influential input variables, smaller sensitivity indices for less influential input variables, and more consistent values for sensitivity indices between methods (PCE and GP) and between analyses repeated with samples of different sizes.

More Details

Advances in Geologic Disposal Safety Assessment and an Unsaturated Alluvium Reference Case

Mariner, Paul M.; Stein, Emily S.; Cunningham, Leigh C.; Frederick, Jennifer M.; Hammond, Glenn E.; Lowry, Thomas S.; Basurto, Eduardo B.

The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Depat ment of Energy (DOE) Office of Nuclear Energy (NE), Office of Fuel Cycle Technology (OFCT) is conducting research and development (R&D) on geologic disposal of spent nuclear fuel (SNF) and high level nuclear waste (HLW). Two high priorities for SFWST disposal R&D are design concept development and disposal system modeling (DOE 2011, Table 6). These priorities are directly addressed in the SFWST Geologic Disposal Safety Assessment (GDSA) work package, which is charged with developing a disposal system modeling and analysis capability for evaluating disposal system performance for nuclear waste in geologic media. This report describes specific GDSA activities in fiscal year 2018 (FY 2018) toward the development of GDSA Framework, an enhanced disposal system modeling and analysis capability for geologic disposal of nuclear waste. GDSA Framework employs the PFLOTRAN thermal-hydrologic-chemical multiphysics code (Hammond et al. 2011a; Lichtner and Hammond 2012) and the Dakota uncertainty sampling and propagation code (Adams et al. 2012; Adams et al. 2013). Each code is designed for massivelyparallel processing in a high-performance computing (HPC) environment. Multi-physics representations in PFLOTRAN are used to simulate various coupled processes including heat flow, fluid flow, waste dissolution, radionuclide release, radionuclide decay and ingrowth, precipitation and dissolution of secondary phases, and radionuclide transport through engineered barriers and natural geologic barriers to the biosphere. Dakota is used to generate sets of representative realizations and to analyze parameter sensitivity.

More Details

US Sections Prepared for Future NEA Crystalline Club (CRC) Report on Status of R&D in CRC Countries Investigating Deep Geologic Disposal in Crystalline Rock

Mariner, Paul M.; Stein, Emily S.; Kalinina, Elena A.; Hadgu, Teklu H.; Jove Colon, Carlos F.; Basurto, Eduardo B.

U.S. knowledge in deep geologic disposal in crystalline rock is advanced and growing. U.S. status and recent advances related to crystalline rock are discussed throughout this report. Brief discussions of the history of U.S. disposal R&D and the accumulating U.S. waste inventory are presented in Sections 3.x.2 and 3.x.3. The U.S. repository concept for crystalline rock is presented in Section 3.x.4. In Chapters 4 and 5, relevant U.S. research related to site characterization and repository safety functions are discussed. U.S. capabilities for modelling fractured crystalline rock and performing probabilistic total system performance assessments are presented in Chapter 6.

More Details
Results 51–75 of 132
Results 51–75 of 132