DECOVALEX-2023 Task F (Performance Assessment) Introduction, Fall Meeting 2020
Abstract not provided.
Abstract not provided.
Abstract not provided.
This report is a summary of the international collaboration work conducted by Sandia and funded by the US Department of Energy Office (DOE) of Nuclear Energy Spent Fuel and Waste Science & Technology (SFWST) as part of the Sandia National Laboratories Salt R&D and Salt International work packages. This report satisfies milestone level-three milestone M3SF-205N010303062. Several stand-alone sections make up this summary report, each completed by the participants. The first two sections discuss international collaborations on geomechanical benchmarking exercises (WEIMOS), granular salt reconsolidation (KOMPASS), engineered barriers (RANGERS), and documentation of Features, Events, and Processes (FEPs).
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Energies
The safety case for deep borehole disposal of nuclear wastes contains a safety strategy, an assessment basis, and a safety assessment. The safety strategy includes strategies for management, siting and design, and assessment. The assessment basis considers site selection, pre-closure, and post-closure, which includes waste and engineered barriers, the geosphere/natural barriers, and the biosphere and surface environment. The safety assessment entails a pre-closure safety analysis, a post-closure performance assessment, and confidence enhancement analyses. This paper outlines the assessment basis and safety assessment aspects of a deep borehole disposal safety case. The safety case presented here is specific to deep borehole disposal of Cs and Sr capsules, but is generally applicable to other waste forms, such as spent nuclear fuel. The safety assessments for pre-closure and post-closure are briefly summarized from other sources; key issues for confidence enhancement are described in greater detail. These confidence enhancement analyses require building the technical basis for geologically old, reducing, highly saline brines at the depth of waste emplacement, and using reactive-transport codes to predict their movement in post-closure. The development and emplacement of borehole seals above the waste emplacement zone is also important to confidence enhancement.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.