Energy Efficient Neuromorphic Algorithm Training with Analog Memory Arrays
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
2019 International Symposium on VLSI Technology, Systems and Application, VLSI-TSA 2019
Analog crossbars have the potential to reduce the energy and latency required to train a neural network by three orders of magnitude when compared to an optimized digital ASIC. The crossbar simulator, CrossSim, can be used to model device nonidealities and determine what device properties are needed to create an accurate neural network accelerator. Experimentally measured device statistics are used to simulate neural network training accuracy and compare different classes of devices including TaOx ReRAM, Lir-Co-Oz devices, and conventional floating gate SONOS memories. A technique called 'Periodic Carry' can overcomes device nonidealities by using a positional number system while maintaining the benefit of parallel analog matrix operations.
Abstract not provided.
Abstract not provided.
Science
Neuromorphic computers could overcome efficiency bottlenecks inherent to conventional computing through parallel programming and readout of artificial neural network weights in a crossbar memory array. However, selective and linear weight updates and <10-nanoampere read currents are required for learning that surpasses conventional computing efficiency. We introduce an ionic floating-gate memory array based on a polymer redox transistor connected to a conductive-bridge memory (CBM). Selective and linear programming of a redox transistor array is executed in parallel by overcoming the bridging threshold voltage of the CBMs. Synaptic weight readout with currents <10 nanoamperes is achieved by diluting the conductive polymer with an insulator to decrease the conductance. The redox transistors endure >1 billion write-read operations and support >1-megahertz write-read frequencies.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Advanced Functional Materials
Electronic synaptic devices are important building blocks for neuromorphic computational systems that can go beyond the constraints of von Neumann architecture. Although two-terminal memristive devices are demonstrated to be possible candidates, they suffer from several shortcomings related to the filament formation mechanism including nonlinear switching, write noise, and high device conductance, all of which limit the accuracy and energy efficiency. Electrochemical three-terminal transistors, in which the channel conductance can be tuned without filament formation provide an alternative platform for synaptic electronics. Here, an all-solid-state electrochemical transistor made with Li ion–based solid dielectric and 2D α-phase molybdenum oxide (α-MoO3) nanosheets as the channel is demonstrated. These devices achieve nonvolatile conductance modulation in an ultralow conductance regime (<75 nS) by reversible intercalation of Li ions into the α-MoO3 lattice. Based on this operating mechanism, the essential functionalities of synapses, such as short- and long-term synaptic plasticity and bidirectional near-linear analog weight update are demonstrated. Simulations using the handwritten digit data sets demonstrate high recognition accuracy (94.1%) of the synaptic transistor arrays. These results provide an insight into the application of 2D oxides for large-scale, energy-efficient neuromorphic computing networks.
Abstract not provided.
Abstract not provided.
ChemSusChem
Detailed understanding of solid–solid interface structure–function relationships is critical for the improvement and wide deployment of all-solid-state batteries. The interfaces between lithium phosphorous oxynitride (LiPON) solid electrolyte material and lithium metal anode, and between LiPON and LixCoO2 cathode, have been reported to generate solid–electrolyte interphase (SEI)-like products and/or disordered regions. Using electronic structure calculations and crystalline LiPON models, we predict that LiPON models with purely P−N−P backbones are kinetically inert towards lithium at room temperature. In contrast, transfer of oxygen atoms from low-energy LixCoO2(104) surfaces to LiPON is much faster under ambient conditions. The mechanisms of the primary reaction steps, LiPON structural motifs that readily reacts with lithium metal, experimental results on amorphous LiPON to partially corroborate these predictions, and possible mitigation strategies to reduce degradations are discussed. LiPON interfaces are found to be useful case studies for highlighting the importance of kinetics-controlled processes during battery assembly at moderate processing temperatures.
Journal of Physics D: Applied Physics
Neuromorphic devices are becoming increasingly appealing as efficient emulators of neural networks used to model real world problems. However, no hardware to date has demonstrated the necessary high accuracy and energy efficiency gain over CMOS in both (1) training via backpropagation and (2) in read via vector matrix multiplication. Such shortcomings are due to device non-idealities, particularly asymmetric conductance tuning in response to uniform voltage pulse inputs. Here, by formulating a general circuit model for capacitive ion-exchange neuromorphic devices, we show that asymmetric nonlinearity in organic electrochemical neuromorphic devices (ENODes) can be suppressed by an appropriately chosen write scheme. Simulations based upon our model suggest that a nonlinear write-selector could reduce the switching voltage and energy, enabling analog tuning via a continuous set of resistance states (100 states) with extremely low switching energy (∼170 fJ • μm-2). This work clarifies the pathway to neural algorithm accelerators capable of parallelism during both read and write operations.
Abstract not provided.
Chemistry of Materials
Major advances in thin-film solid-state batteries (TFSSBs) may capitalize on 3D structuring using high-aspect-ratio substrates such as nanoscale pits, pores, trenches, flexible polymers, and textiles. This will require conformal processes such as atomic layer deposition (ALD) for every active functional component of the battery. Here we explore the deposition and electrochemical properties of SnO2, SnNy, and SnOxNy thin films as TFSSB anode materials, grown by ALD using tetrakisdimethylamido(tin), H2O, and N2 plasma as precursors. By controlling the dose ratio between H2O and N2, the N-O fraction can be tuned between 0% N and 95% N. The electrochemical properties of these materials were tested across a composition range varying from pure SnO2, to SnON intermediates, and pure SnNy. In TFSSBs, the SnNy anodes are found to be more stable during cycling than the SnO2 or SnOxNy films, with an initial reversible capacity beyond that of Li-Sn alloying, retaining 75% of their capacity over 200 cycles compared to only 50% for SnO2. Furthermore, the performance of the SnOxNy anodes indicates that SnNy anodes should not be negatively impacted by small levels of O contamination.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.