The PRO-X program is actively supporting the design of nuclear systems by developing a framework to both optimize the fuel cycle infrastructure for advanced reactors (ARs) and minimize the potential for production of weapons-usable nuclear material. Three study topics are currently being investigated by Sandia National Laboratories (SNL) with support from Argonne National Laboratories (ANL). This multi-lab collaboration is focused on three study topics which may offer proliferation resistance opportunities or advantages in the nuclear fuel cycle. These topics are: 1) Transportation Global Landscape, 2) Transportation Avoidability, and 3) Parallel Modular Systems vs Single Large System (Crosscutting Activity).
This report documents the updated seismic shake table test plan. The report describes the shake table inputs (ground motions), test hardware, shake table facility, friction experiment, and proposed instrumentation.
This report is a preliminary test plan of the seismic shake table test. The final report will be developed when all decisions regarding the test hardware, instrumentation, and shake table inputs are made. A new revision of this report will be issued in spring of 2022. The preliminary test plan documents the free-field ground motions that will be used as inputs to the shake table, the test hardware, and instrumentation. It also describes the facility at which the test will take place in late summer of 2022.
Management of spent nuclear fuel and high-level radioactive waste consists of three main phases – storage, transportation, and disposal – commonly referred to as the back end of the nuclear fuel cycle. Current practice for commercial spent nuclear fuel management in the United States (US) includes temporary storage of spent fuel in both pools and dry storage systems at operating or shutdown nuclear power plants. Storage pools are filling to their operational capacity, and management of the approximately 2,200 metric tons of spent fuel newly discharged each year requires transferring older and cooler spent fuel from pools into dry storage. Unless a repository becomes available that can accept spent fuel for permanent disposal, projections indicate that the US will have approximately 136,000 metric tons of spent fuel in dry storage systems by mid-century, when the last plants in the current reactor fleet are decommissioned. Current designs for dry storage systems rely on large multi-assembly canisters, the most common of which are so-called “dual-purpose canisters” (DPCs). DPCs are certified for both storage and transportation, but are not designed or licensed for permanent disposal. The large capacity (greater number of spent fuel assemblies) of these canisters can lead to higher canister temperatures, which can delay transportation and/or complicate disposal. This current management practice, in which the utilities continue loading an ever-increasing inventory of larger DPCs, does not emphasize integration among storage, transportation, and disposal. This lack of integration does not cause safety issues, but it does lead to a suboptimal system that increases costs, complicates storage and transportation operations, and limits options for permanent disposal. This paper describes strategies for improving integration of management practices in the US across the entire back end of the nuclear fuel cycle. The complex interactions between storage, transportation, and disposal make a single optimal solution unlikely. However, efforts to integrate various phases of nuclear waste management can have the greatest impact if they begin promptly and continue to evolve throughout the remaining life of the current fuel cycle. A key factor that influences the path forward for integration of nuclear waste management practices is the identification of the timing and location for a repository. The most cost-effective path forward would be to open a repository by mid-century with the capability to directly dispose of DPCs without repackaging the spent fuel into disposalready canisters. Options that involve repackaging of spent fuel from DPCs into disposalready canisters or that delay the repository opening significantly beyond mid-century could add 10s of billions of dollars to the total system life cycle cost.
Currently, spent nuclear fuel (SNF) is stored in on-site independent spent-fuel storage installations (ISFSIs) at seventythree (73) nuclear power plants (NPPs) in the US. Because a site for geologic repository for permanent disposal of SNF has not been constructed, the SNF will remain in dry storage significantly longer than planned. During this time, the ISFSIs, and potentially consolidated storage facilities, will experience earthquakes of different magnitudes. The dry storage systems are designed and licensed to withstand large seismic loads. When dry storage systems experience seismic loads, there are little data on the response of SNF assemblies contained within them. The Spent Fuel Waste Disposition (SFWD) program is planning to conduct a full-scale seismic shake table test to close the gap related to the seismic loads on the fuel assemblies in dry storage systems. This test will allow for quantifying the strains and accelerations on surrogate fuel assembly hardware and cladding during earthquakes of different magnitudes and frequency content. The main component of the test unit will be the full-scale NUHOMS 32 PTH2 dry storage canister. The canister will be loaded with three surrogate fuel assemblies and twenty-nine dummy assemblies. Two dry storage configurations will be tested – horizontal and vertical above-ground concrete overpacks. These configurations cover 91% of the current dry storage configurations. The major input into the shake table test are the seismic excitations or the earthquake ground motions – acceleration time histories in two horizontal and one vertical direction that will be applied to the shake table surface during the tests. The shake table surface represents the top of the concrete pad on which a dry storage system is placed. The goal of the ground motion task is to develop the ground motions that would be representative of the range of seismotectonic and other conditions that any site in the Western US (WUS) or Central Eastern US (CEUS) might entail. This task is challenging because of the large number of the ISFSI sites, variety of seismotectonic and site conditions, and effects that soil amplification, soil-structure interaction, and pad flexibility may have on the ground motions.
The 30 cm drop is the remaining NRC normal conditions of transport (NCT) regulatory requirement (10 CFR 71.71) for which there are no data on the response of spent fuel. While obtaining data on the spent fuel is not a direct requirement, it allows for quantifying the risk of fuel breakage resulting from a cask drop from a height of 30 cm or less. Because a full-scale cask and impact limiters are very expensive, 3 consecutive drop tests were conducted to obtain strains on a full-scale surrogate 17x17 PWR assembly. The first step was a 30 cm drop of a 1/3 scale cask loaded with dummy assemblies. The second step was a 30 cm drop test of a full-scale dummy assembly. The third step was a 30 cm drop of a full-scale surrogate assembly. The results of this final test are presented in this paper. The test was conducted in May 2020. The acceleration pulses on the surrogate assembly were in good agreement with the expected pulses derived from steps 1 and 2. This confirmed that during the 30 cm drop the surrogate assembly experienced the same conditions as it would have if it had been dropped in a full-scale cask with impact limiters. The surrogate assembly was instrumented with 27 strain gauges. Pressure paper was inserted between the rods within the two long and two short spacer grid spans in order to register the pressure in case of rod-to-rod contact. The maximum observed peak strain on the surrogate assembly was 1,724 microstrain at the bottom end of the assembly. The pressure paper sheets from the two short spans were blank. The pressure paper sheets from the two long spans, except a few middle ones, showed marks indicating rod-to-rod contact. The maximum estimated contact pressure was 4,100 psi. The longitudinal bending stress corresponding to the maximum observed strain value (calculated from the stress-strain curve for low burnup cladding) was 22,230 psi. Both values are significantly below the yield strength of the cladding. The major conclusion is that the fuel rods will maintain their integrity following a 30 cm drop inside of a transportation cask.
Can Spent Nuclear Fuel withstand the shocks and vibrations experienced during normal conditions of transport? This question was the motivation for the multi-modal transportation test (MMTT) (Summer 2017), 1/3-scale cask 30 cm drop test (December 2018), and full-scale assembly 30 cm drop tests (June 2019). The full-scale ENSA ENUN 32P cask with 3 surrogate 17x17 PWR assemblies was used in the MMTT. The 1/3-scale cask was a mockup of this cask. The 30 cm drop tests provided the accelerations on the 1/3-scale dummy assemblies. These data were used to design full-scale assembly drop tests with the goal to quantify the strain fuel rods experience inside a cask when dropped from a height of 30 cm. The drop tests were first done with the dummy and then with the surrogate assembly. This paper presents the preliminary results of the tests.
The data from the multi-modal transportation test conducted in 2017 demonstrated that the inputs from the shock events during all transport modes (truck, rail, and ship) were amplified from the cask to the spent commercial nuclear fuel surrogate assemblies. These data do not support common assumption that the cask content experiences the same accelerations as the cask itself. This was one of the motivations for conducting 30 cm drop tests. The goal of the 30 cm drop test is to measure accelerations and strains on the surrogate spent nuclear fuel assembly and to determine whether the fuel rods can maintain their integrity inside a transportation cask when dropped from a height of 30 cm. The 30 cm drop is the remaining NRC normal conditions of transportation regulatory requirement (10 CFR 71.71) for which there are no data on the actual surrogate fuel. Because the full-scale cask and impact limiters were not available (and their cost was prohibitive), it was proposed to achieve this goal by conducting three separate tests. This report describes the first two tests — the 30 cm drop test of the 1/3 scale cask (conducted in December 2018) and the 30 cm drop of the full-scale dummy assembly (conducted in June 2019). The dummy assembly represents the mass of a real spent nuclear fuel assembly. The third test (to be conducted in the spring of 2020) will be the 30 cm drop of the full-scale surrogate assembly. The surrogate assembly represents a real full-scale assembly in physical, material, and mechanical characteristics, as well as in mass.
Numerical modeling of flow and transport through fractured crystalline rock was conducted to identify major factors that affect migration of radionuclides from a high-level nuclear waste repository. The study was based on data collected at the Mizunami Underground Research Laboratory (URL) in Japan. Distributions of fracture parameters were used to generate a selected number of DFN realizations. For each realization the DFN was upscaled to a continuum mesh to provide permeability and porosity fields. The upscaled permeability and porosity fields were then used to study flow and transport through the fractured rock in a site-scale domain. For the present study the focus is on the effect of domain size and on upscaling of DFN to a continuum system. Simulation results and analysis on various upscaling and boundary condition assumptions are presented.