Publications

Results 51–60 of 60
Skip to search filters

Electrostatic discharge/electrical overstress susceptibility in MEMS: A new failure mode

Proceedings of SPIE - The International Society for Optical Engineering

Walraven, J.A.; Soden, Jerry M.; Tanner, Danelle M.; Tangyunyong, Paiboon T.; Cole, Edward I.; Anderson, Richard E.; Irwin, Lloyd W.

Electrostatic discharge (ESD) and electrical overstress (EOS) damage of Micro-Electro-Mechanical Systems (MEMS) has been identified as a new failure mode. This failure mode has not been previously recognized or addressed primarily due to the mechanical nature and functionality of these systems, as well as the physical failure signature that resembles stiction. Because many MEMS devices function by electrostatic actuation, the possibility of these devices not only being susceptible to ESD or EOS damage but also having a high probability of suffering catastrophic failure due to ESD or EOS is very real. Results from previous experiments have shown stationary comb fingers adhered to the ground plane on MEMS devices tested in shock, vibration, and benign environments. Using Sandia polysilicon microengines, we have conducted tests to establish and explain the ESD/EOS failure mechanism of MEMS devices. These devices were electronically and optically inspected prior to and after ESD and EOS testing. This paper will address the issues surrounding MEMS susceptibility to ESD and EOS damage as well as describe the experimental method and results found from ESD and EOS testing. The tests were conducted using conventional IC failure analysis and reliability assessment characterization tools. In this paper we will also present a thermal model to accurately depict the heat exchange between an electrostatic comb finger and the ground plane during an ESD event.

More Details

Failure Analysis of MEMS Using Thermally-Induced Voltage Alteration

Conference Proceedings from the International Symposium for Testing and Failure Analysis

Walraven, J.A.; Cole, Edward I.; Tangyunyong, Paiboon T.

Electrical shorting in micro-electro-mechanical systems (MEMS) is a significant production and manufacturing concern. We present a new approach to localizing shorted MEMS devices using Thermally-Induced Voltage Alteration (TIVA) [1]. In TIVA, the shorted, thermally isolated MEMS device is very sensitive to thermal stimulus. The site of the MEMS short will respond as a thermocouple when heated. By monitoring the potential across the shorted MEMS device as a laser scans across the sample, an image showing the location of the thermocouple (short site) can be generated. The TIVA signal for thermally isolated MEMS devices is much higher than that observed for conventional IC interconnections. This results from the larger temperature gradients generated during laser scanning due to little or no substrate heat sinking. The capability to quickly localize shorted MEMS structures is demonstrated by several examples. Thermal modeling of heat distributions is presented and is consistent with the experimental results.

More Details

LDRD final report backside localization of open and shorted IC interconnections LDRD Project (FY98 and FY 99)

Cole, Edward I.; Tangyunyong, Paiboon T.; Barton, Daniel L.

Two new failure analysis techniques have been developed for backside and front side localization of open and shorted interconnections on ICs. These scanning optical microscopy techniques take advantage of the interactions between IC defects and localized heating using a focused infrared laser ({lambda} = 1,340 nm). Images are produced by monitoring the voltage changes across a constant current supply used to power the IC as the laser beam is scanned across the sample. The methods utilize the Seebeck Effect to localize open interconnections and Thermally-Induced Voltage Alteration (TIVA) to detect shorts. Initial investigations demonstrated the feasibility of TIVA and Seebeck Effect Imaging (SEI). Subsequent improvements have greatly increased the sensitivity of the TIVA/SEI system, reducing the acquisition times by more than 20X and localizing previously unobserved defects. The interaction physics describing the signal generation process and several examples demonstrating the localization of opens and shorts are described. Operational guidelines and limitations are also discussed. The system improvements, non-linear response of IC defects to heating, modeling of laser heating and examples using the improved system for failure analysis are presented.

More Details
Results 51–60 of 60
Results 51–60 of 60