Novel Defect Detection Using Laser-Based Imaging and TIVA with a Visible Laser
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
We present the results of a two-year early career LDRD that focused on defect localization in deep green and deep ultraviolet (UV) light-emitting diodes (LEDs). We describe the laser-based techniques (TIVA/LIVA) used to localize the defects and interpret data acquired. We also describe a defect screening method based on a quick electrical measurement to determine whether defects should be present in the LEDs. We then describe the stress conditions that caused the devices to fail and how the TIVA/LIVA techniques were used to monitor the defect signals as the devices degraded and failed. We also describe the correlation between the initial defects and final degraded or failed state of the devices. Finally we show characterization results of the devices in the failed conditions and present preliminary theories as to why the devices failed for both the InGaN (green) and AlGaN (UV) LEDs.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Electronic Device Failure Analysis
The working of induced voltage alteration (IVA) techniques and its major developments in areas of hardware for analysis, electrical biasing, detection advances, resolution improvements, and future possibilities, is discussed. IVA technique uses either a scanning electron microscope's (SEM) electron beam or a scanning optical microscope's (SOM) laser beam as the external stimulus. The other IVA techniques were developed using different localized stimuli, with the same sensitive biasing approach. The IVA techniques takes advantage of the strong signal response of CMOS devices when operated as current-to-voltage converters. To improve the biasing approach, externally induced voltage alterations (XIVA) was introduced, in which an ac choke circuit acts as a constant-voltage source. Synchronization with device operation also allows specific vectors to be analyzed using local photocurrent and thermal stimulus.
State-of-the-art techniques for failure localization and design modification through bulk silicon are essential for multi-level metallization and new, flip chip packaging methods. The tutorial reviews the transmission of light through silicon, sample preparation, and backside defect localization techniques that are both currently available and under development. The techniques covered include emission microscopy, scanning laser microscope based techniques (electrooptic techniques, LIVA and its derivatives), and other non-IR based tools (FIB, e-beam techniques, etc.).
SEM and SOM techniques for IC analysis that take advantage of 'active injection' are reviewed. Active injection refers to techniques that alter the electrical characteristics of the device analyzed. All of these techniques can be performed on a standard SEM or SOM (using the proper laser wavelengths).
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Optical beam failure analysis methods provide unique capabilities to identify and localize defect types that would be difficult or impossible by other methods. by understanding the physics of signal generation, the user gains the insight necessary to optimize technique performance.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.