Publications

Results 101–125 of 249
Skip to search filters

Scalable focused ion beam creation of nearly lifetime-limited single quantum emitters in diamond nanostructures

Nature Communications

Schröder, Tim; Trusheim, Matthew E.; Walsh, Michael; Li, Luozhou; Zheng, Jiabao; Schukraft, Marco; Sipahigil, Alp; Evans, Ruffin E.; Sukachev, Denis D.; Nguyen, Christian T.; Pacheco, Jose L.; Camacho, Ryan M.; Bielejec, Edward S.; Lukin, Mikhail D.; Englund, Dirk

The controlled creation of defect centre - nanocavity systems is one of the outstanding challenges for efficiently interfacing spin quantum memories with photons for photon-based entanglement operations in a quantum network. Here we demonstrate direct, maskless creation of atom-like single silicon vacancy (SiV) centres in diamond nanostructures via focused ion beam implantation with ∼32 nm lateral precision and <50 nm positioning accuracy relative to a nanocavity. We determine the Si+ ion to SiV centre conversion yield to be ∼2.5% and observe a 10-fold conversion yield increase by additional electron irradiation. Low-temperature spectroscopy reveals inhomogeneously broadened ensemble emission linewidths of ∼51 GHz and close to lifetime-limited single-emitter transition linewidths down to 126±13 MHz corresponding to ∼1.4 times the natural linewidth. This method for the targeted generation of nearly transform-limited quantum emitters should facilitate the development of scalable solid-state quantum information processors.

More Details

The anatomy of the minority carrier - atomic cluster interaction in semiconductors

Doyle, Barney L.; Auden, Elizabeth C.; Bielejec, Edward S.; Abraham, John B.; Vizkelethy, Gyorgy V.

This project was to use light ion beam induced charge (IBIC) to detect damage cascades generated by a single heavy ion, and thereby reveal details of the shape of the cascade and the physics of recombination of carriers that interact with the cluster. Further IBIC measurements using the hardware and software of this project will improve the accuracy of theoretical models used to predict electrical degradation in devices exposed to radiation environments. In addition, future use of light ion IBIC detection of single ion-induced damage could be used to locate single ion implantation sites in quantum computing applications. This project used Sandia's Pelletron and nanoImplanter (nI) to produce heavy ion-induced collision cascades in p-n diodes, simulating cascades made by primary knock-on atoms recoiled by neutrons. Si and Li beams from the nI were used to perform highly focused scans generating IBIC signal maps where regions of lower charge collection efficiency were observed without incurring further damage. The very first use of ion channeled beams for IBIC was explored to maximize ionization, improve contrast and provide very straight line trajectories to improve lateral resolution.

More Details
Results 101–125 of 249
Results 101–125 of 249