Publications

Results 101–150 of 249
Skip to search filters

Scalable focused ion beam creation of nearly lifetime-limited single quantum emitters in diamond nanostructures

Nature Communications

Schröder, Tim; Trusheim, Matthew E.; Walsh, Michael; Li, Luozhou; Zheng, Jiabao; Schukraft, Marco; Sipahigil, Alp; Evans, Ruffin E.; Sukachev, Denis D.; Nguyen, Christian T.; Pacheco, Jose L.; Camacho, Ryan M.; Bielejec, Edward S.; Lukin, Mikhail D.; Englund, Dirk

The controlled creation of defect centre - nanocavity systems is one of the outstanding challenges for efficiently interfacing spin quantum memories with photons for photon-based entanglement operations in a quantum network. Here we demonstrate direct, maskless creation of atom-like single silicon vacancy (SiV) centres in diamond nanostructures via focused ion beam implantation with ∼32 nm lateral precision and <50 nm positioning accuracy relative to a nanocavity. We determine the Si+ ion to SiV centre conversion yield to be ∼2.5% and observe a 10-fold conversion yield increase by additional electron irradiation. Low-temperature spectroscopy reveals inhomogeneously broadened ensemble emission linewidths of ∼51 GHz and close to lifetime-limited single-emitter transition linewidths down to 126±13 MHz corresponding to ∼1.4 times the natural linewidth. This method for the targeted generation of nearly transform-limited quantum emitters should facilitate the development of scalable solid-state quantum information processors.

More Details

The anatomy of the minority carrier - atomic cluster interaction in semiconductors

Doyle, Barney L.; Auden, Elizabeth C.; Bielejec, Edward S.; Abraham, John B.; Vizkelethy, Gyorgy V.

This project was to use light ion beam induced charge (IBIC) to detect damage cascades generated by a single heavy ion, and thereby reveal details of the shape of the cascade and the physics of recombination of carriers that interact with the cluster. Further IBIC measurements using the hardware and software of this project will improve the accuracy of theoretical models used to predict electrical degradation in devices exposed to radiation environments. In addition, future use of light ion IBIC detection of single ion-induced damage could be used to locate single ion implantation sites in quantum computing applications. This project used Sandia's Pelletron and nanoImplanter (nI) to produce heavy ion-induced collision cascades in p-n diodes, simulating cascades made by primary knock-on atoms recoiled by neutrons. Si and Li beams from the nI were used to perform highly focused scans generating IBIC signal maps where regions of lower charge collection efficiency were observed without incurring further damage. The very first use of ion channeled beams for IBIC was explored to maximize ionization, improve contrast and provide very straight line trajectories to improve lateral resolution.

More Details

Sub-Micron Resolution of Localized Ion Beam Induced Charge Reduction in Silicon Detectors Damaged by Heavy Ions

IEEE Transactions on Nuclear Science

Auden, Elizabeth C.; Pacheco, Jose L.; Bielejec, Edward S.; Vizkelethy, Gyorgy V.; Abraham, John B.; Doyle, Barney L.

Displacement damage reduces ion beam induced charge (IBIC) through Shockley-Read-Hall recombination. Closely spaced pulses of 200 keVions focused in a 40 nm beam spot are used to create damage cascades within areas. Damaged areas are detected through contrast in IBIC signals generated with focused ion beams of {200 ions and 60 keV ions. IBIC signal reduction can be resolved over sub-micron regions of a silicon detector damaged by as few as 1000 heavy ions.

More Details

Silicon Quantum Dots with Counted Antimony Donor Implants

Sandia journal manuscript; Not yet accepted for publication

Singh, Meenakshi S.; Pacheco, Jose L.; Perry, Daniel L.; Ten Eyck, Gregory A.; Wendt, J.R.; Pluym, Tammy P.; Dominguez, Jason J.; Manginell, Ronald P.; Luhman, Dwight R.; Bielejec, Edward S.; Lilly, Michael L.; Carroll, Malcolm

Deterministic control over the location and number of donors is crucial to donor spin quantum bits (qubits) in semiconductor based quantum computing. A focused ion beam is used to implant close to quantum dots. Ion detectors are integrated next to the quantum dots to sense the implants. The numbers of ions implanted can be counted to a precision of a single ion. Regular coulomb blockade is observed from the quantum dots. Charge offsets indicative of donor ionization, are observed in devices with counted implants.

More Details
Results 101–150 of 249
Results 101–150 of 249