Publications

Results 51–76 of 76
Skip to search filters

Scaling of X pinches from 1 MA to 6 MA

Sinars, Daniel S.; McBride, Ryan D.; Wenger, D.F.; Cuneo, M.E.; Yu, Edmund Y.; Harding, Eric H.; Hansen, Stephanie B.; Ampleford, David A.; Jennings, Christopher A.

This final report for Project 117863 summarizes progress made toward understanding how X-pinch load designs scale to high currents. The X-pinch load geometry was conceived in 1982 as a method to study the formation and properties of bright x-ray spots in z-pinch plasmas. X-pinch plasmas driven by 0.2 MA currents were found to have source sizes of 1 micron, temperatures >1 keV, lifetimes of 10-100 ps, and densities >0.1 times solid density. These conditions are believed to result from the direct magnetic compression of matter. Physical models that capture the behavior of 0.2 MA X pinches predict more extreme parameters at currents >1 MA. This project developed load designs for up to 6 MA on the SATURN facility and attempted to measure the resulting plasma parameters. Source sizes of 5-8 microns were observed in some cases along with evidence for high temperatures (several keV) and short time durations (<500 ps).

More Details

Three-dimensional effects in trailing mass in the wire-array Z pinch

Physics of Plasmas

Yu, Edmund Y.; Cuneo, M.E.; Desjarlais, Michael P.; Lemke, Raymond W.; Sinars, Daniel S.; Haill, Thomas A.; Waisman, E.M.; Bennett, G.R.; Jennings, C.A.; Mehlhorn, T.A.; Brunner, T.A.; Hanshaw, H.L.; Porter, J.L.; Stygar, W.A.; Rudakov, L.I.

The implosion phase of a wire-array Z pinch is investigated using three-dimensional (3D) simulations, which model the mass ablation phase and its associated axial instability using a mass injection boundary condition. The physical mechanisms driving the trailing mass network are explored, and it is found that in 3D the current paths though the trailing mass can reduce bubble growth on the imploding plasma sheath, relative to the 2D (r,z) equivalent. Comparison between the simulations and a high quality set of experimental radiographs is presented. © 2008 American Institute of Physics.

More Details

One-dimensional ablation in multiwire arrays

Proposed for publication in Physics of Plasmas.

Yu, Edmund Y.; Oliver, Bryan V.; Mehlhorn, Thomas A.

The main physical processes responsible for plasma ablation in multiwire Z pinches are considered via eigensolutions to one-dimensional steady state magnetohydrodynamics. A double scale-length structure of the plasma accelerating layer is demonstrated. The width of the resistive scale-length that defines the current layer structure is significantly larger than the thermal scale-length, where transport of energy toward the cores and plasma pressure play important roles. The transport of energy is provided mainly by radiation, though electron thermal conduction is also important very close to the plasma-core interface. Another type of solution of the steady state problem is revealed, when local Ohmic heating is important down to the interface. Selection between these two types of solutions is considered from multiple points of view. Although the one-dimensional problem is mainly considered in this paper, it is shown how the one-dimensional results may help to understand results of two-dimensional models.

More Details

Linear and nonlinear evolution of azimuthal clumping instabilities in a Z-pinch wire array

Physics of Plasmas

Tang, Wilkin; Strickler, T.S.; Lau, Y.Y.; Gilgenbach, R.M.; Zier, Jacob; Gomez, M.R.; Yu, Edmund Y.; Garasi, Christopher J.; Cuneo, M.E.; Mehlhorn, Thomas A.

This paper presents an analytic theory on the linear and nonlinear evolution of the most unstable azimuthal clumping mode, known as the pi-mode, in a discrete wire array. In the pi-mode, neighboring wires of the array pair-up as a result of the mutual attraction of the wires which carry current in the same direction. The analytic solution displays two regimes, where the collective interactions of all wires dominate, versus where the interaction of the neighboring, single wire dominates. This solution was corroborated by two vastly different numerical codes which were used to simulate arrays with both high wire numbers (up to 600) and low wire number (8). All solutions show that azimuthal clumping of discrete wires occurs before appreciable radial motion of the wires. Thus, absence of azimuthal clumping of wires in comparison with the wires' radial motion may imply substantial lack of wire currents. While the present theory and simulations have ignored the plasma corona and axial variations, it is argued that their effects, and the complete account of the three-dimensional feature of the pi-mode, together with a scaling study of the wire number, may be expediently simulated by using only one single wire in an annular wedge with a reflection condition imposed on the wedge's boundary. © 2007 American Institute of Physics.

More Details

Towards a predictive MHD simulation capability for designing hypervelocity magnetically-driven flyer plates and PWclass z-pinch x-ray sources on Z and ZR

Mehlhorn, Thomas A.; Yu, Edmund Y.; Vesey, Roger A.; Cuneo, M.E.; Jones, Brent M.; Knudson, Marcus D.; Sinars, Daniel S.; Robinson, Allen C.; Trucano, Timothy G.; Brunner, Thomas A.; Desjarlais, Michael P.; Garasi, Christopher J.; Haill, Thomas A.; Hanshaw, Heath L.; Lemke, Raymond W.; Oliver, Bryan V.; Peterson, Kyle J.

Abstract not provided.

Progress in symmetric ICF capsule implosions and wire-array z-pinch source physics for double z-pinch driven hohlraums

Proposed for publication in Plasma Physics and Controlled Fusion.

Cuneo, M.E.; Nash, Thomas J.; Yu, Edmund Y.; Mehlhorn, Thomas A.; Matzen, M.K.; Vesey, Roger A.; Bennett, Guy R.; Sinars, Daniel S.; Stygar, William A.; Rambo, Patrick K.; Smith, Ian C.; Bliss, David E.

Over the last several years, rapid progress has been made evaluating the double-z-pinch indirect-drive, inertial confinement fusion (ICF) high-yield target concept (Hammer et al 1999 Phys. Plasmas 6 2129). We have demonstrated efficient coupling of radiation from two wire-array-driven primary hohlraums to a secondary hohlraum that is large enough to drive a high yield ICF capsule. The secondary hohlraum is irradiated from two sides by z-pinches to produce low odd-mode radiation asymmetry. This double-pinch source is driven from a single electrical power feed (Cuneo et al 2002 Phys. Rev. Lett. 88 215004) on the 20 MA Z accelerator. The double z-pinch has imploded ICF capsules with even-mode radiation symmetry of 3.1 {+-} 1.4% and to high capsule radial convergence ratios of 14-21 (Bennett et al 2002 Phys. Rev. Lett. 89 245002; Bennett et al 2003 Phys. Plasmas 10 3717; Vesey et al 2003 Phys. Plasmas 10 1854). Advances in wire-array physics at 20 MA are improving our understanding of z-pinch power scaling with increasing drive current. Techniques for shaping the z-pinch radiation pulse necessary for low adiabat capsule compression have also been demonstrated.

More Details

Mass profile and instability growth measurements for 300-wire z-pinch implosions driven by 14-18, MA

Proposed for publication in Physical Review Letters.

Sinars, Daniel S.; Cuneo, M.E.; Yu, Edmund Y.; Bliss, David E.; Nash, Thomas J.; Deeney, Christopher D.; Mazarakis, Michael G.; Wenger, D.F.

We present the first comprehensive study of high wire-number, wire-array Z-pinch dynamics at 14-18 MA using x-ray backlighting and optical shadowgraphy diagnostics. The cylindrical arrays retain slowly expanding, dense wire cores at the initial position up to 60% of the total implosion time. Azimuthally correlated instabilities at the array edge appear during this stage which continue to grow in amplitude and wavelength after the start of bulk motion, resulting in measurable trailing mass that does not arrive on axis before peak x-ray emission.

More Details

[Copy of characteristics and scaling of tungsten-wire-array z-pinch implosion dynamics at 20 MA.]

Proposed for publication in Physics of Plasmas.

Vesey, Roger A.; Yu, Edmund Y.; Nash, Thomas J.; Bliss, David E.; Bennett, Guy R.; Sinars, Daniel S.; Simpson, Walter W.; Ruggles, Larry R.; Wenger, D.F.; Garasi, Christopher J.; Aragon, Rafael A.; Fowler, William E.; Johnson, Drew J.; Keller, Keith L.; McGurn, John S.; Mehlhorn, Thomas A.; Speas, Christopher S.; Struve, Kenneth W.; Stygar, William A.; Chandler, Gordon A.

Abstract not provided.

Scaling of high-mass tungsten-wire-array z-pinch discrete-wire implosion dynamics at 20 MA

Proposed for publication in Physical Review Letters.

Cuneo, M.E.; Yu, Edmund Y.; Garasi, Christopher J.; Oliver, Bryan V.; Aragon, Rafael A.; Bliss, David E.; Lazier, Steven E.; Mehlhorn, Thomas A.; Nielsen, D.S.; Sarkisov, Gennady S.; Cuneo, M.E.; Vesey, Roger A.; Wagoner, Tim C.; Chandler, Gordon A.; Waisman, Eduardo M.; Stygar, William A.; Nash, Thomas J.; Yu, Edmund Y.

Abstract not provided.

Results 51–76 of 76
Results 51–76 of 76