Publications

Results 51–75 of 139
Skip to search filters

Terry Turbopump Analytical Modeling Efforts in Fiscal Year 2016 - Progress Report

Osborn, Douglas M.; Ross, Kyle R.; Cardoni, Jeffrey N.

This document details the Fiscal Year 2016 modeling efforts to define the true operating limitations (margins) of the Terry turbopump systems used in the nuclear industry for Milestone 3 (full-scale component experiments) and Milestone 4 (Terry turbopump basic science experiments) experiments. The overall multinational-sponsored program creates the technical basis to: (1) reduce and defer additional utility costs, (2) simplify plant operations, and (3) provide a better understanding of the true margin which could reduce overall risk of operations.

More Details

System theoretic frameworks for mitigating risk complexity in the international transportation of spent nuclear fuel

PSAM 2018 - Probabilistic Safety Assessment and Management

Williams, Adam D.; Osborn, Douglas M.; Kalinina, Elena A.

In response to the expansion of nuclear fuel cycle (NFC) activities (and the associated suite of risks) around the world, this effort provides an evaluation of systems-based solutions for managing such risk complexity in multi-modal (land and water), and multi-jurisdictional international spent nuclear fuel (SNF) transportation. By better understanding systemic risks in SNF transportation, developing SNF transportation risk assessment frameworks, and evaluating these systems-based risk assessment frameworks, this research illustrates interdependency between safety, security, and safeguards (3S) risks is inherent in NFC activities that can go unidentified when each “S” is independently evaluated. Two novel system-theoretic analysis techniques, dynamic probabilistic risk assessment (DPRA) and system-theoretic process analysis (STPA), provide integrated 3S analysis to address these interdependencies. This research suggests a need (and provides a way) to reprioritize United States engagement efforts to reduce global SNF transportation risks. Note: This paper is a summary of the final results found in Reference [1].

More Details

Sequoyah SOARCA uncertainty analysis of a STSBO accident

PSAM 2018 - Probabilistic Safety Assessment and Management

Bixler, Nathan E.; Dennis, Matthew L.; Brooks, Dusty M.; Osborn, Douglas M.; Ghosh, S.T.; Hathaway, Alfred

The U.S. Nuclear Regulatory Commission initiated the state-of-the-art reactor consequence analyses (SOARCA) project to develop realistic estimates of the offsite radiological health consequences for potential severe reactor accidents. The SOARCA analysis of an ice condenser containment plant was performed because its relatively low design pressure and reliance on igniters makes it potentially susceptible to early containment failure from hydrogen combustion during a severe accident. The focus was on station blackout accident scenarios where all alternating current power is lost. Accident progression calculations used the MELCOR computer code and offsite consequence analyses were performed with MACCS. The analysis included more than 500 MELCOR and MACCS simulations to account for uncertainty in important accident progression and offsite consequence input parameters. Consequences from severe nuclear power plant accidents modeled in this and previous SOARCA analyses are smaller than calculated in earlier studies. The delayed releases calculated provide more time for emergency response actions. The results show that early containment failure is very unlikely, even without successful use of igniters. However, these results are dependent on the distributions assigned to safety valve failure-to-close parameters, and considerable uncertainty remains on the true distributions for these parameters due to very limited test data. Even for scenarios resulting in early containment failure, the calculated individual latent fatal cancer risks are very small. Early and latent-cancer fatality risks are one focus of this paper. Regression results showing the most influential parameters are also discussed.

More Details

Hypothetical Case and Scenario Description for International Transportation of Spent Nuclear Fuel

Williams, Adam D.; Osborn, Douglas M.; Jones, Katherine A.; Kalinina, Elena A.; Cohn, Brian C.; Thomas, Maikael A.; Parks, Mancel J.; Parks, Ethan R.; Mohagheghi, Amir H.

To support more rigorous analysis on global security issues at Sandia National Laboratories (SNL), there is a need to develop realistic data sets without using "real" data or identifying "real" vulnerabilities, hazards or geopolitically embarrassing shortcomings. In response, an interdisciplinary team led by subject matter experts in SNL's Center for Global Security and Cooperation (CGSC) developed a hypothetical case description. This hypothetical case description assigns various attributes related to international SNF transportation that are representative, illustrative and indicative of "real" characteristics of "real" countries. There is no intent to identify any particular country and any similarity with specific real-world events is purely coincidental. To support the goal of this report to provide a case description (and set of scenarios of concern) for international SNF transportation inclusive of as much "real-world" complexity as possible -- without crossing over into politically sensitive or classified information -- this SAND report provides a subject matter expert-validated (and detailed) description of both technical and political influences on the international transportation of spent nuclear fuel.

More Details

Understanding Risks in the Global Civilian Nuclear Enterprise: Global Nuclear Assured Security Scenarios Workshop

Deland, Sharon M.; Keller, Elizabeth J.; Littlefield, Adriane L.; Osborn, Douglas M.

The purpose of the scenarios workshop held for the Civilian Nuclear component of the Global Nuclear Assured Security Mission Integration Initiative was to identify sources of risk in the global civilian nuclear enterprise. The risks identified are inadequately addressed through current technical measures, regulatory frameworks and institutions and should be considered for further research. The workshop participants also developed four high level scenarios describing different sequences of events that could result in radiological releases, widespread loss of electric power, and loss of public confidence in segments of the nuclear industry. The scenarios are intended for further analysis and as the basis for simulation exercises.

More Details

System Theoretic Frameworks for Mitigating Risk Complexity in the Nuclear Fuel Cycle

Williams, Adam D.; Osborn, Douglas M.; Jones, Katherine A.; Kalinina, Elena A.; Cohn, Brian C.; Mohagheghi, Amir H.; DeMenno, Mercy D.; Thomas, Maikael A.; Parks, Mancel J.; Parks, Ethan R.; Jeantete, Brian A.

In response to the expansion of nuclear fuel cycle (NFC) activities -- and the associated suite of risks -- around the world, this project evaluated systems-based solutions for managing such risk complexity in multimodal and multi-jurisdictional international spent nuclear fuel (SNF) transportation. By better understanding systemic risks in SNF transportation, developing SNF transportation risk assessment frameworks, and evaluating these systems-based risk assessment frameworks, this research illustrated interdependency between safety, security, and safeguards risks is inherent in NFC activities and can go unidentified when each "S" is independently evaluated. Two novel system-theoretic analysis techniques -- dynamic probabilistic risk assessment (DPRA) and system-theoretic process analysis (STPA) -- provide integrated "3S" analysis to address these interdependencies and the research results suggest a need -- and provide a way -- to reprioritize United States engagement efforts to reduce global nuclear risks. Lastly, this research identifies areas where Sandia National Laboratories can spearhead technical advances to reduce global nuclear dangers.

More Details

Terry Turbopump Expanded Operating Band Full-Scale Component and Basic Science Detailed Test Plan-Revision 2

Osborn, Douglas M.; Solom, Matthew A.; Cardoni, Jeffrey N.; Ross, Kyle R.

This document details the milestone approach to define the true operating limitations (margins) of the Terry turbopump systems used in the nuclear industry for Milestone 3 (full-scale component experiments) and Milestone 4 (Terry turbopump basic science experiments) efforts. The overall multinational-sponsored program creates the technical basis to: (1) reduce and defer additional utility costs, (2) simplify plant operations, and (3) provide a better understanding of the true margin which could reduce overall risk of operations.

More Details
Results 51–75 of 139
Results 51–75 of 139