Publications

Results 1–25 of 186
Skip to search filters

Irradiation-induced grain boundary facet motion: In situ observations and atomic-scale mechanisms

Science Advances

Barr, Christopher M.; Chen, Elton Y.; Nathaniel, James E.; Lu, Ping L.; Adams, David P.; Dingreville, Remi P.; Boyce, Brad B.; Hattar, Khalid M.; Medlin, Douglas L.

Metals subjected to irradiation environments undergo microstructural evolution and concomitant degradation, yet the nanoscale mechanisms for such evolution remain elusive. Here, we combine in situ heavy ion irradiation, atomic resolution microscopy, and atomistic simulation to elucidate how radiation damage and interfacial defects interplay to control grain boundary (GB) motion. While classical notions of boundary evolution under irradiation rest on simple ideas of curvature-driven motion, the reality is far more complex. Focusing on an ion-irradiated Pt Σ3 GB, we show how this boundary evolves by the motion of 120° facet junctions separating nanoscale {112} facets. Our analysis considers the short- and mid-range ion interactions, which roughen the facets and induce local motion, and longer-range interactions associated with interfacial disconnections, which accommodate the intergranular misorientation. We suggest how climb of these disconnections could drive coordinated facet junction motion. These findings emphasize that both local and longer-range, collective interactions are important to understanding irradiation-induced interfacial evolution.

More Details

Semi-Automated, Object-Based Tomography of Dislocation Structures

Microscopy and Microanalysis

Sills, R.B.S.; Medlin, Douglas L.

The characterization of the three-dimensional arrangement of dislocations is important for many analyses in materials science. Dislocation tomography in transmission electron microscopy is conventionally accomplished through intensity-based reconstruction algorithms. Although such methods work successfully, a disadvantage is that they require many images to be collected over a large tilt range. Here, we present an alternative, semi-automated object-based approach that reduces the data collection requirements by drawing on the prior knowledge that dislocations are line objects. Our approach consists of three steps: (1) initial extraction of dislocation line objects from the individual frames, (2) alignment and matching of these objects across the frames in the tilt series, and (3) tomographic reconstruction to determine the full three-dimensional configuration of the dislocations. Drawing on innovations in graph theory, we employ a node-line segment representation for the dislocation lines and a novel arc-length mapping scheme to relate the dislocations to each other across the images in the tilt series. We demonstrate the method for a dataset collected from a dislocation network imaged by diffraction-contrast scanning transmission electron microscopy. Based on these results and a detailed uncertainty analysis for the algorithm, we discuss opportunities for optimizing data collection and further automating the method.

More Details

Defects in Layered van der Waals Heterostructures: Implications for Thermoelectrics

ACS Applied Nano Materials

Gannon, Renae N.; Hamann, Danielle M.; Ditto, Jeffrey; Mitchson, Gavin; Bauers, Sage R.; Merrill, Devin R.; Medlin, Douglas L.; Johnson, David C.

Layered van der Waals heterostructures provide extraordinary opportunities for applications such as thermoelectrics and allow for tunability of optical and electronic properties. The performance of devices made from these heterostructures will depend on their properties, which are sensitive to the nanoarchitecture (constituent layer thicknesses, layer sequence, etc.). However, performance will also be impacted by defects, which will vary in concentration and identity with the nanoarchitecture and preparation conditions. Here, we identify several types of defects and propose mechanisms for their formation, focusing on compounds in the ([SnSe]1+δ)m(TiSe2)n system prepared using the modulated elemental reactants method. The defects were observed by atomic resolution high-angle annular dark-field scanning transmission electron microscopy and can be broadly categorized into those that form domain boundaries as a result of rotational disorder from the self-assembly process and those that are layer-thickness-related and result from local or global deviations in the amount of material deposited. Defect type and density were found to depend on the nanoarchitecture of the heterostructure. Categorizing the defects provides insights into defect formation in these van der Waals layered heterostructures and suggests strategies for controlling their concentrations. Strategies for controlling defect type and concentration are proposed, which would have implications for transport properties for applications in thermoelectrics.

More Details

Synthesis and Electrical Properties of a New Compound (BiSe)0.97(Bi2Se3)1.26(BiSe)0.97(MoSe2) Containing Metallic 1T-MoSe2

Chemistry of Materials

Choffel, Marisa A.; Gannon, Renae N.; Göhler, Fabian; Miller, Aaron M.; Medlin, Douglas L.; Seyller, Thomas; Johnson, David C.

The synthesis and electrical properties of a new misfit compound containing BiSe, Bi2Se3, and MoSe2 constituent layers are reported. The reaction pathway involves competition between the formation of (BiSe)1+x(Bi2Se3)1+y(BiSe)1+x(MoSe2) and [(Bi2Se3)1+y]2(MoSe2). Excess Bi and Se are required in the precursor to synthesize (BiSe)1+x(Bi2Se3)1+y(BiSe)1+x(MoSe2). High-angle annular dark field-scanning transmission electron microscopy (HAADF-STEM) confirm the stacking sequence of the heterostructure. Small grains of both 2H-and 1T-MoSe2 are observed in the MoSe2 layers. X-ray photoelectron spectroscopy (XPS) indicates that there is a significantly higher percentage of 1T-MoSe2 in (BiSe)1+x(Bi2Se3)1+y(BiSe)1+x(MoSe2) than in (BiSe)0.97(MoSe2), suggesting that more charge transfer to MoSe2 occurs due to the additional BiSe layer. The additional charge transfer results in (BiSe)1+x(Bi2Se3)1+y(BiSe)1+x(MoSe2) having a low resistivity (14-19 μω m) with metallic temperature dependence. The heterogeneous mix of MoSe2 polytypes observed in the XPS complicates the interpretation of the Hall data as two bands contribute to the electrical continuity.

More Details

Disconnection-Mediated Transition in Segregation Structures at Twin Boundaries

Journal of Physical Chemistry Letters

Hu, Chongze H.; Medlin, Douglas L.; Dingreville, Remi P.

Twin boundaries play an important role in the thermodynamics, stability, and mechanical properties of nanocrystalline metals. Understanding their structure and chemistry at the atomic scale is key to guide strategies for fabricating nanocrystalline materials with improved properties. In this work, we report an unusual segregation phenomenon at gold-doped platinum twin boundaries, which is arbitrated by the presence of disconnections, a type of interfacial line defect. By using atomistic simulations, we show that disconnections containing a stacking fault can induce an unexpected transition in the interfacial-segregation structure at the atomic scale, from a bilayer, alternating-segregation structure to a trilayer, segregation-only structure. This behavior is found for faulted disconnections of varying step heights and dislocation characters. Supported by a structural analysis and the classical Langmuir–McLean segregation model, we reveal that this phenomenon is driven by a structurally induced drop of the local pressure across the faulted disconnection accompanied by an increase in the segregation volume.

More Details

Interrogating the Effects of Hydrogen on the Behavior of Planar Deformation Bands in Austenitic Stainless Steel

Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science

Sabisch, J.E.C.; Sugar, J.D.; Ronevich, J.; San Marchi, Christopher W.; Medlin, Douglas L.

The effects of internal hydrogen on the deformation microstructures of 304L austenitic stainless steel have been characterized using electron backscattered diffraction (EBSD), transmission Kikuchi diffraction (TKD), high-resolution scanning transmission electron microscopy (HRSTEM), and nanoprobe diffraction. Samples, both thermally precharged with hydrogen and without thermal precharging, were subjected to tensile deformation of 5 and 20 pct true strain followed by multiple microscopic interrogations. Internal hydrogen produced widespread stacking faults within the as-forged initially unstrained material. While planar deformation bands developed with tensile strain in both the hydrogen-precharged and non-precharged material, the character of these bands changed with the presence of internal hydrogen. As shown by nanobeam diffraction and HRSTEM observations, in the absence of internal hydrogen, the bands were predominantly composed of twins, whereas for samples deformed in the presence of internal hydrogen, ε-martensite became more pronounced and the density of deformation bands increased. For the 20 pct strain condition, α′-martensite was observed at the intersection of ε-martensite bands in hydrogen-precharged samples, whereas in non-precharged samples α′-martensite was only observed along grain boundaries. We hypothesize that the increased prevalence of α′-martensite is a secondary effect of increased ε-martensite and deformation band density due to internal hydrogen and is not a signature of internal hydrogen itself.

More Details

Effect of microstructural and environmental variables on ductility of austenitic stainless steels

International Journal of Hydrogen Energy

San Marchi, Christopher W.; Ronevich, Joseph A.; Sabisch, J.E.C.; Sugar, J.D.; Medlin, Douglas L.; Somerday, B.P.

Austenitic stainless steels are used extensively in harsh environments, including for high-pressure gaseous hydrogen service. However, the tensile ductility of this class of materials is very sensitive to materials and environmental variables. While tensile ductility is generally insufficient to qualify a material for hydrogen service, ductility is an effective tool to explore microstructural and environmental variables and their effects on hydrogen susceptibility, to inform understanding of the mechanisms of hydrogen effects in metals, and to provide insight to microstructural variables that may improve relative performance. In this study, hydrogen precharging was used to simulate high-pressure hydrogen environments to evaluate hydrogen effects on tensile properties. Several austenitic stainless steels were considered, including both metastable and stable alloys. Room temperature and subambient temperature tensile properties were evaluated with three different internal hydrogen contents for type 304L and 316L austenitic stainless steels and one hydrogen content for XM-11. Significant ductility loss was observed for both metastable and stable alloys, suggesting the stability of the austenitic phase is not sufficient to characterize the effects of hydrogen. Internal hydrogen does influence the character of deformation, which drives local damage accumulation and ultimately fracture for both metastable and stable alloys. While a quantitative description of hydrogen-assisted fracture in austenitic stainless steels remains elusive, these observations underscore the importance of the hydrogen-defect interactions and the accumulation of damage at deformation length scales.

More Details

Thickness-Independent Vibrational Thermal Conductance across Confined Solid-Solution Thin Films

ACS Applied Materials and Interfaces

Giri, Ashutosh; Cheaito, Ramez; Gaskins, John T.; Mimura, Takanori; Brown-Shaklee, Harlan J.; Medlin, Douglas L.; Ihlefeld, Jon F.; Hopkins, Patrick E.

We experimentally show that the thermal conductance across confined solid-solution crystalline thin films between parent materials does not necessarily lead to an increase in thermal resistances across the thin-film geometries with increasing film thicknesses, which is counterintuitive to the notion that adding a material serves to increase the total thermal resistance. Confined thin epitaxial Ca0.5Sr0.5TiO3 solid-solution films with systematically varying thicknesses in between two parent perovskite materials of calcium titanate and (001)-oriented strontium titanate are grown, and thermoreflectance techniques are used to accurately measure the thermal boundary conductance across the confined solid-solution films, showing that the thermal resistance does not substantially increase with the addition of solid-solution films with increasing thicknesses from μ1 to μ10 nm. Contrary to the macroscopic understanding of thermal transport where adding more material along the heat propagation direction leads to larger thermal resistances, our results potentially offer experimental support to the computationally predicted concept of vibrational matching across interfaces. This concept is based on the fact that a better match in the available heat-carrying vibrations due to an interfacial layer can lead to lower thermal boundary resistances, thus leading to an enhancement in thermal boundary conductance across interfaces driven by the addition of a thin "vibrational bridge"layer between two solids.

More Details

Influence of Nanoarchitecture on Charge Donation and the Electrical-Transport Properties in [(SnSe)1+δ][TiSe2]q Heterostructures

Chemistry of Materials

Hamann, DM H.; D, Bardgett D.; SR, Bauers S.; TW, Kasel T.; AM, Mroz A.; CH, Hendon C.; Medlin, Douglas L.; DC., Johnson DC.

A series of [(SnSe)1+δ][TiSe2]q heterostructures with systematic changes in the number of TiSe2 layers in the repeating unit were synthesized, and both the structure and electronic-transport properties were characterized. The c-axis lattice parameter increased linearly as q increased, and the slope was consistent with the thickness of a TiSe2 layer. In-plane lattice constants for SnSe and TiSe2 were independent of q. Temperature-dependent resistivity and Hall coefficient data varied systematically as q was increased. The low-temperature electrical data was modeled assuming that only electrons were involved, and the data was fit to a variable range hopping mechanism. The number of carriers involved in this low-temperature transport decreased as q increased, indicating that approximately 1/10th of an electron per SnSe bilayer was transferred to the TiSe2. Calculations also indicated that there was charge donation from the SnSe layer to the TiSe2 layer, resulting in an ionic bond between the layers, which aided in stabilizing the heterostructures. The charge donation created a TiSe2–SnSe–TiSe2 block with the properties distinct from the constituent bulk properties. At high temperatures in large q samples, the transport data required holes to be activated across a band gap to be successfully modeled. Furthermore, this high-temperature transport scales with the number of TiSe2 layers that are not adjacent to SnSe. Using a consistent model across all of the samples significantly constrained the adjustable parameters. The charge transfer between the two constituents results in the stabilization of the heterostructure by an ionic interaction and the formation of a conducting TiSe2–SnSe–TiSe2 block. We find this is consistent with prior reports, where interactions between two-dimensional (2D) layers and their surroundings (i.e., adjacent layers, substrate, or atmosphere) have been shown to strongly influence the properties.

More Details

Nanoscale conditions for ductile void nucleation in copper: Vacancy condensation and the growth-limited microstructural state

Acta Materialia

Noell, Philip N.; Sabisch, Julian E.; Medlin, Douglas L.; Boyce, Brad B.

Ductile rupture or tearing usually involves structural degradation from the nucleation and growth of voids and their coalescence into cracks. Although some materials contain preexisting pores, the first step in failure is often the formation of voids. Because this step can govern both the failure strain and the fracture mechanism, it is critical to understand the mechanisms of void nucleation and the enabling microstructural configurations which give rise to nucleation. To understand the role of dislocations during void nucleation, the present study presents ex-situ cross-sectional observations of interrupted deformation experiments revealing incipient, subsurface voids in a copper material containing copper oxide inclusions. The local microstructural state was evaluated using electron backscatter diffraction (EBSD), electron channeling contrast (ECC), transmission electron microscopy (TEM), and transmission kikuchi diffraction (TKD). Surprisingly, before substantial growth and coalescence had occurred, the deformation process had resulted in the nucleation of a high density of nanoscale (≈50 nm) voids in the deeply deformed neck region where strains were on the order of 1.5. Such a proliferation of nucleation sites immediately suggests that the rupture process is limited by void growth, not nucleation. With regard to void growth, analysis of more than 20 microscale voids suggests that dislocation boundaries facilitate the growth process. The present observations call into question prior assumptions on the role of dislocation pile-ups and provide new context for the formulation of revised ductile rupture models. While the focus of this study is on damage accumulation in a highly ductile metal containing small, well-dispersed particles, these results are also applicable to understanding void nucleation in engineering alloys.

More Details

Unraveling the dislocation core structure at a van der Waals gap in bismuth telluride

Nature Communications

Medlin, Douglas L.; Yang, N.; Spataru, C.D.; Hale, L.M.; Mishin, Y.

Tetradymite-structured chalcogenides such as bismuth telluride (Bi 2 Te 3 ) are of significant interest for thermoelectric energy conversion and as topological insulators. Dislocations play a critical role during synthesis and processing of such materials and can strongly affect their functional properties. The dislocations between quintuple layers present special interest since their core structure is controlled by the van der Waals interactions between the layers. In this work, using atomic-resolution electron microscopy, we resolve the basal dislocation core structure in Bi 2 Te 3 , quantifying the disregistry of the atomic planes across the core. We show that, despite the existence of a stable stacking fault in the basal plane gamma surface, the dislocation core spreading is mainly due to the weak bonding between the layers, which leads to a small energy penalty for layer sliding parallel to the van der Waals gap. Calculations within a semidiscrete variational Peierls-Nabarro model informed by first-principles calculations support our experimental findings.

More Details

Topological Quantum Materials for Quantum Computation

Nenoff, T.M.; Chou, Stanley S.; Dickens, Peter D.; Modine, N.A.; Yu, Wenlong Y.; Lee, Stephen R.; Sapkota, Keshab R.; Wang, George T.; Wendt, J.R.; Medlin, Douglas L.; Leonard, Francois L.; Pan, Wei P.

Recent years have seen an explosion in research efforts discovering and understanding novel electronic and optical properties of topological quantum materials (TQMs). In this LDRD, a synergistic effort of materials growth, characterization, electrical-magneto-optical measurements, combined with density functional theory and modeling has been established to address the unique properties of TQMs. Particularly, we have carried out extensive studies in search for Majorana fermions (MFs) in TQMs for topological quantum computation. Moreover, we have focused on three important science questions. 1) How can we controllably tune the properties of TQMs to make them suitable for quantum information applications? 2) What materials parameters are most important for successfully observing MFs in TQMs? 3) Can the physical properties of TQMs be tailored by topological band engineering? Results obtained in this LDRD not only deepen our current knowledge in fundamental quantum physics but also hold great promise for advanced electronic/photonic applications in information technologies. ACKNOWLEDGEMENTS The work at Sandia National Labs was supported by a Laboratory Directed Research and Development project. Device fabrication was performed at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. We are grateful to many people inside and outside Sandia for their support and fruitful collaborations. This report describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

More Details
Results 1–25 of 186
Results 1–25 of 186