Aging of Adhesive Joints: Fall 2010 TCG XIV Review
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
International Journal for Numerical Methods in Fluids
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in the Journal of Adhesion.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in the Journal of Chemical Physics.
Rotational relaxation functions of the end-to-end vector of short, freely jointed and freely rotating chains were determined from molecular dynamics simulations. The associated response functions were obtained from the one-sided Fourier transform of the relaxation functions. The Cole-Davidson function was used to fit the response functions with extensive use being made of Cole-Cole plots in the fitting procedure. For the systems studied, the Cole-Davidson function provided remarkably accurate fits [as compared to the transform of the Kohlrausch-Williams-Watts (KWW) function]. The only appreciable deviations from the simulation results were in the high frequency limit and were due to ballistic or free rotation effects. The accuracy of the Cole-Davidson function appears to be the result of the transition in the time domain from stretched exponential behavior at intermediate time to single exponential behavior at long time. Such a transition can be explained in terms of a distribution of relaxation times with a well-defined longest relaxation time. Since the Cole-Davidson distribution has a sharp cutoff in relaxation time (while the KWW function does not), it makes sense that the Cole-Davidson would provide a better frequency-domain description of the associated response function than the KWW function does.
In this report, we summarize our work on developing a production level foam processing computational model suitable for predicting the self-expansion of foam in complex geometries. The model is based on a finite element representation of the equations of motion, with the movement of the free surface represented using the level set method, and has been implemented in SIERRA/ARIA. An empirically based time- and temperature-dependent density model is used to encapsulate the complex physics of foam nucleation and growth in a numerically tractable model. The change in density with time is at the heart of the foam self-expansion as it creates the motion of the foam. This continuum-level model uses an homogenized description of foam, which does not include the gas explicitly. Results from the model are compared to temperature-instrumented flow visualization experiments giving the location of the foam front as a function of time for our EFAR model system.
A series of experiments has been performed to allow observation of the foaming process and the collection of temperature, rise rate, and microstructural data. Microfocus video is used in conjunction with particle image velocimetry (PIV) to elucidate the boundary condition at the wall. Rheology, reaction kinetics and density measurements complement the flow visualization. X-ray computed tomography (CT) is used to examine the cured foams to determine density gradients. These data provide input to a continuum level finite element model of the blowing process.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Chemical Physics
Abstract not provided.
Abstract not provided.
Journal of Chemical Physics
The rotational dynamics of chemically similar systems based on freely jointed and freely rotating chains are studied. The second Legendre polynomial of vectors along chain backbones is used to investigate the rotational dynamics at different length scales. In a previous study, it was demonstrated that the additional bond-angle constraint in the freely rotating case noticeably perturbs the character of the translational relaxation away from that of the freely jointed system. Here, it is shown that differences are also apparent in the two systems' rotational dynamics. The relaxation of the end-to-end vector is found to display a long time, single-exponential tail and a stretched exponential region at intermediate times. The stretching exponents Β are found to be 0.75±0.02 for the freely jointed case and 0.68±0.02 for the freely rotating case. For both system types, time-packing-fraction superposition is seen to hold on the end-to-end length scale. In addition, for both systems, the rotational relaxation times are shown to be proportional to the translational relaxation times, demonstrating that the Debye-Stokes-Einstein law holds. The second Legendre polynomial of the bond vector is used to probe relaxation behavior at short length scales. For the freely rotating case, the end-to-end relaxation times scale differently than the bond relaxation times, implying that the behavior is non-Stokes-Einstein, and that time-packing-fraction superposition does not hold across length scales for this system. For the freely jointed case, end-to-endrelaxation times do scale with bond relaxation times, and both Stokes-Einstein and time-packing-fraction-across-length-scales superposition are obeyed. © 2007 American Institute of Physics.
Variations in the neutron generator encapsulation process can affect functionality. However, instead of following the historical path in which the effects of process variations are assessed directly through functional tests, this study examines how material properties key to generator functionality correlate with process variations. The results of this type of investigation will be applicable to all generators and can provide insight on the most profitable paths to process and material improvements. Surprisingly, the results at this point imply that the process is quite robust, and many of the current process tolerances are perhaps overly restrictive. The good news lies in the fact that our current process ensures reproducible material properties. The bad new lies in the fact that it would be difficult to solve functional problems by changes in the process.