The recent discovery of bright, room-temperature, single photon emitters in GaN leads to an appealing alternative to diamond best single photon emitters given the widespread use and technological maturity of III-nitrides for optoelectronics (e.g. blue LEDs, lasers) and high-speed, high-power electronics. This discovery opens the door to on-chip and on-demand single photon sources integrated with detectors and electronics. Currently, little is known about the underlying defect structure nor is there a sense of how such an emitter might be controllably created. A detailed understanding of the origin of the SPEs in GaN and a path to deterministically introduce them is required. In this project, we develop new experimental capabilities to then investigate single photon emission from GaN nanowires and both GAN and AlN wafers. We ion implant our wafers with the ion implanted with our focused ion beam nanoimplantation capabilities at Sandia, to go beyond typical broad beam implantation and create single photon emitting defects with nanometer precision. We've created light emitting sources using Li+ and He+, but single photon emission has yet to be demonstrated. In parallel, we calculate the energy levels of defects and transition metal substitutions in GaN to gain a better understanding of the sources of single photon emission in GaN and AlN. The combined experimental and theoretical capabilities developed throughout this project will enable further investigation into the origins of single photon emission from defects in GaN, AlN, and other wide bandgap semiconductors.
The recently-developed ability to control phosphorous-doping of silicon at an atomic level using scanning tunneling microscopy, a technique known as atomic precision advanced manufacturing (APAM), has allowed us to tailor electronic devices with atomic precision, and thus has emerged as a way to explore new possibilities in Si electronics. In these applications, critical questions include where current flow is actually occurring in or near APAM structures as well as whether leakage currents are present. In general, detection and mapping of current flow in APAM structures are valuable diagnostic tools to obtain reliable devices in digital-enhanced applications. In this report, we used nitrogen-vacancy (NV) centers in diamond for wide-field magnetic imaging (with a few-mm field of view and micron-scale resolution) of magnetic fields from surface currents flowing in an APAM test device made of a P delta-doped layer on a Si substrate, a standard APAM witness material. We integrated a diamond having a surface NV ensemble with the device (patterned in two parallel mm-sized ribbons), then mapped the magnetic field from the DC current injected in the APAM device in a home-built NV wide-field microscope. The 2D magnetic field maps were used to reconstruct the surface current densities, allowing us to obtain information on current paths, device failures such as choke points where current flow is impeded, and current leakages outside the APAM-defined P-doped regions. Analysis on the current density reconstructed map showed a projected sensitivity of ~0.03 A m-1, corresponding to a smallest-detectable current in the 200 μm wide APAM ribbon of ~6 μA. These results demonstrate the failure analysis capability of NV wide-field magnetometry for APAM materials, opening the possibility to investigate other cutting-edge microelectronic devices.
The atomic precision advanced manufacturing (APAM) enabled vertical tunneling field effect transistor (TFET) presents a new opportunity in microelectronics thanks to the use of ultra-high doping and atomically abrupt doping profiles. We present modeling and assessment of the APAM TFET using TCAD Charon simulation. First, we show, through a combination of simulation and experiment, that we can achieve good control of the gated channel on top of a phosphorus layer made using APAM, an essential part of the APAM TFET. Then, we present simulation results of a preliminary APAM TFET that predict transistor-like current-voltage response despite low device performance caused by using large geometry dimensions. Future device simulations will be needed to optimize geometry and doping to guide device design for achieving superior device performance.
While it is likely practically a bad idea to shrink a transistor to the size of an atom, there is no arguing that it would be fantastic to have atomic-scale control over every aspect of a transistor – a kind of crystal ball to understand and evaluate new ideas. This project showed that it was possible to take a niche technique used to place dopants in silicon with atomic precision and apply it broadly to study opportunities and limitations in microelectronics. In addition, it laid the foundation to attaining atomic-scale control in semiconductor manufacturing more broadly.
The attachment of dopant precursor molecules to depassivated areas of hydrogen-terminated silicon templated with a scanning tunneling microscope (STM) has been used to create electronic devices with subnanometer precision, typically for quantum physics experiments. This process, which we call atomic precision advanced manufacturing (APAM), dopes silicon beyond the solid-solubility limit and produces electrical and optical characteristics that may also be useful for microelectronic and plasmonic applications. However, scanned probe lithography lacks the throughput required to develop more sophisticated applications. Here, we demonstrate and characterize an APAM device workflow where scanned probe lithography of the atomic layer resist has been replaced by photolithography. An ultraviolet laser is shown to locally and controllably heat silicon above the temperature required for hydrogen depassivation on a nanosecond timescale, a process resistant to under- and overexposure. STM images indicate a narrow range of energy density where the surface is both depassivated and undamaged. Modeling that accounts for photothermal heating and the subsequent hydrogen desorption kinetics suggests that the silicon surface temperatures reached in our patterning process exceed those required for hydrogen removal in temperature-programmed desorption experiments. A phosphorus-doped van der Pauw structure made by sequentially photodepassivating a predefined area and then exposing it to phosphine is found to have a similar mobility and higher carrier density compared with devices patterned by STM. Lastly, it is also demonstrated that photodepassivation and precursor exposure steps may be performed concomitantly, a potential route to enabling APAM outside of ultrahigh vacuum.
One big challenge of the emerging atomic precision advanced manufacturing (APAM) technology for microelectronics application is to realize APAM devices that operate at room temperature (RT). We demonstrate that semiclassical technology computer aided design (TCAD) device simulation tool can be employed to understand current leakage and improve APAM device design for RT operation. To establish the applicability of semiclassical simulation, we first show that a semiclassical impurity scattering model with the Fermi-Dirac statistics can explain the very low mobility in APAM devices quite well; we also show semiclassical TCAD reproduces measured sheet resistances when proper mobility values are used. We then apply semiclassical TCAD to simulate current leakage in realistic APAM wires. With insights from modeling, we were able to improve device design, fabricate Hall bars, and demonstrate RT operation for the very first time.