Publications

Results 76–89 of 89
Skip to search filters

Plasma-filled focusing cell for radiographic paraxial diodes on RITS

Conference Record of the International Power Modulator Symposium and High Voltage Workshop

Hahn, K.; Maenchen, John E.; Cordova, S.; Molina, I.; Portillo, Salvador; Rovang, Dean C.; Schamiloglu, E.; Welch, D.R.; Oliver, B.V.; Rose, D.V.

Paraxial diodes have been a stronghold for high-brightness, flash x-ray radiography. In its traditional configuration, an electron beam impinges onto an anode foil, entering a gas-filled transport cell. Within the cell, the beam is focused into a small spot onto a high-Z target to generate x-rays for the radiographic utility. Simulations using Lsp, a particle-in-cell code, have shown that within the gas-filled focusing cell the electron beam spot location sweeps axially during the course of the beam pulse. The result is a larger radiographic spot than is desirable. Lsp has also shown that replacing the gas-filled cell with a fully ionized plasma on the order of 1016 cm-3 will prevent the spot from significant beam sweeping, thus resulting in a smaller, more stable radiographic spot size. Sandia National Laboratories (SNL) is developing a plasma-filled focusing cell for future paraxial diode experiments. A z-discharge in a hydrogen fill is used to generate a uniform, highly ionized plasma. Laser interferometry is the key diagnostic to determine electron density in a light lab setting and during future paraxial diode shots on SNL's RITS-3 accelerator. A time-resolved spot diagnostic will also be implemented during diode shots to measure the change in spot size during the course of the pulse. © 2004 IEEE.

More Details

Advances in pulsed-power-driven radiography system design

Maenchen, John E.; Cordova, S.; Bohlken, Fawn A.; Hahn, Kelly D.; Jaramillo, Deanna M.; Molina, I.; Portillo, Salvador; Madrid, Elizabeth A.; Rovang, Dean C.; Sceiford, Matthew S.

Flash x-ray radiography has undergone a transformation in recent years with the resurgence of interest in compact, high intensity pulsed-power-driven electron beam sources. The radiographic requirements and the choice of a consistent x-ray source determine the accelerator parameters, which can be met by demonstrated Induction Voltage Adder technologies. This paper reviews the state of the art and the recent advances which have improved performance by over an order of magnitude in beam brightness and radiographic utility.

More Details

1- to 10-keV x-ray backlighting of annular wire arrays on the Sandia Z-machine using bent-crystal imaging techniques

Proceedings of SPIE - The International Society for Optical Engineering

Sinars, Daniel S.; Wenger, D.F.; Cuneo, M.E.; Bennett, Guy R.; Anderson, Jessica E.; Porter, John L.; Rambo, Patrick K.; Rovang, Dean C.; Smith, Ian C.

Annular wire array implosions on the Sandia Z-machine can produce >200 TW and 1-2 MJ of soft x rays in the 0.1-10 keV range. The x-ray flux and debris in this environment present significant challenges for radiographic diagnostics. X-ray backlighting diagnostics at 1865 and 6181 eV using spherically-bent crystals have been fielded on the Z-machine, each with a ~0.6 eV spectral bandpass, 10 μm spatial resolution, and a 4 mm by 20 mm field of view. The Z-Beamlet laser, a 2-TW, 2-kJ Nd:glass laser (λ=527 nm), is used to produce 0.1-1 J x-ray sources for radiography. The design, calibration, and performance of these diagnostics is presented.

More Details

Development of a dynamic spot size diagnostic for flash radiographic x-ray sources

Digest of Technical Papers-IEEE International Pulsed Power Conference

Lutz, Stephen; Droemer, Darryl; Devore, Douglas; Rovang, Dean C.; Portillo, Salvador; Maenchen, John E.

There has been considerable work in recent years in the development of high-brightness, high-dose flash x-ray radiographic sources. Spot size is one of several parameters that helps characterize source performance and provides a figure of merit to assess the suitability of various sources to specific experimental requirements. Time-integrated spot-size measurements using radiographic film and a high-Z rolled-edge object have been used for several years with great success. The Advanced Radiographic Technologies program thrust to improve diode performance requires extending both modeling and experimental measurements into the transient time domain. A new Time Resolved Spot Detector (TRSD) is under development to provide this information. In this paper we report the initial results of the performance of a 148-element scintillating fiber array that is fiber-optically coupled to a gated streak camera. Spatial and temporal resolution results are discussed and the data obtained from the Sandia National Laboratories (SNL) RITS-3 (Radiographic Integrated Test Stand) accelerator are presented.

More Details

Survey of plasma diagnostic techniques applicable to radiographic diodes

Digest of Technical Papers-IEEE International Pulsed Power Conference

Schamiloglu, E.; Hahn, K.; Rovang, Dean C.; Maenchen, John E.; Cordova, S.; Molina, I.; Welch, Dale R.; Rose, D.V.; Oliver, Bryan V.; Weber, B.V.; Ponce, D.; Hinshelwood, D.D.

Plasmas are ubiquitous in the high-power electron beam diodes used for radiographic applications. In rod pinch and immersed Bz diodes they are found adjacent to the cathode and anode electrodes, and are suspected of affecting the diodes' impedance characteristics as well as the radiographic spot size. In paraxial diodes, preionized plasmas or beam-formed plasmas are also found in the gas focusing section. A common feature of the plasmas adjacent to the electrodes is that their densities can range from 10 12-1017 cm-3, and their velocity is on the order of 107 cm/s. Researchers from the Naval Research Laboratory have developed a high-sensitivity two-color interferometer that is presently being tested on Gamble II for future use on the Sandia RITS accelerator operating with a Bz diode. This diagnostic is capable of resolving a line-integrated electron density of 2×1012 cm-2, a density that might be capable of even observing the electron beam directly. This paper will present an overview of laser-based and spectroscopic diagnostics that could be used to measure plasmas found in radiographic diodes with spatial and temporal resolutions on the order of 1-5 mm and 5 ns, respectively. Plans for the use of this diagnostic on a preionized plasma cell of a paraxial diode on the Sandia RITS experiment will be discussed.

More Details

Characterization of composite rod-pinch-diode radiographic sources at 5 to 6 MV on Asterix

Digest of Technical Papers-IEEE International Pulsed Power Conference

Mosher, D.; Allen, R.J.; Commisso, R.J.; Swanekamp, S.B.; Young, F.C.; Cooperstein, G.; Vermare, C.; Delvaux, J.; Hordé, Y.; Merle, E.; Nicolas, R.; Noré, D.; Pierret, O.; Rosol, Y.R.; Tailleur, Y.; Véron, L.; Bayol, F.; Garrigues, A.; Delbos, C.; Nicot, G.; Oliver, Bryan V.; Rose, D.V.; Rovang, Dean C.; Maenchen, John E.

Composite-rod-pinch loads on Asterix consisting of hollow aluminum tubes supporting either 1-cm-long, 1-mm-diam blunt-end or tapered gold slugs, or 1.5- to 2-mm-diam gold spheres are characterized. Composite-slug loads have slightly-lower doses than the 1.6- or 2-mm-diam standard rod pinches reported elsewhere and smaller spot sizes, leading to higher measured radiographic figures-of-merit (FOM). The FOM for the gold-sphere loads is substantially-smaller than for the slug loads.

More Details

Retrapping studies on RITS

Hahn, Kelly D.; Welch, Dale R.; Johnson, David L.; Schamiloglu, E.; Hahn, Kelly D.; Maenchen, John E.; Cordova, S.; Molina, I.; Portillo, Salvador; Rovang, Dean C.; Oliver, Bryan V.

SNL is developing intense sources for flash x-ray radiography. The goals of the experiments presented here were to assess power flow issues and to help benchmark the LSP particle-in-cell code used to design the experiment. Comparisons between LSP simulations and experimental data are presented.

More Details

Experimental Comparison of 2-3MV X-Ray Sources for Flash Radiography

Menge, Peter R.; Welch, Dale R.; Johnson, David L.; Maenchen, John E.; Olson, Craig L.; Rovang, Dean C.; Oliver, Bryan V.; Rose, David V.

High-brightness flash x-ray sources are needed for penetrating dynamic radiography for a variety of applications. Various bremsstrahlung source experiments have been conducted on the TriMeV accelerator (3MV, 60 {Omega}, 20 ns) to determine the best diode and focusing configuration in the 2-3 MV range. Three classes of candidate diodes were examined: gas cell focusing, magnetically immersed, and rod pinch. The best result for the gas cell diode was 6 rad at 1 meter from the source with a 5 mm diameter x-ray spot. Using a 0.5 mm diameter cathode immersed in a 17 T solenoidal magnetic field, the best shot produced 4.1 rad with a 2.9 mm spot. The rod pinch diode demonstrated very reproducible radiographic spots between 0.75 and 0.8 mm in diameter, producing 1.2 rad. This represents a factor of eight improvement in the TriMeV flash radiographic capability above the original gas cell diode to a figure of merit (dose/spot diameter) > 1.8 rad/mm. These results clearly show the rod pinch diode to be the choice x-ray source for flash radiography at 2-3 M V endpoint.

More Details
Results 76–89 of 89
Results 76–89 of 89