Magnetic Liner Inertial Fusion (MagLIF) on Z
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in 5th Special Issue of the IEEE Transactions on Plasma Science Z-Pinch Plasmas.
Abstract not provided.
Abstract not provided.
Numerical simulations indicate that significant fusion yields (>100 kJ) may be obtained by pulsed-power-driven implosions of cylindrical metal liners onto magnetized and preheated deuterium-tritium fuel. The primary physics risk to this approach is the Magneto-Rayleigh-Taylor (MRT) instability, which operates during both the acceleration and deceleration phase of the liner implosion. We have designed and performed some experiments to study the MRT during the acceleration phase, where the light fluid is purely magnetic. Results from our first series of experiments and plans for future experiments will be presented. According to simulations, an initial axial magnetic field of 10 T is compressed to >100 MG within the liner during the implosion. The magnetic pressure becomes comparable to the plasma pressure during deceleration, which could significantly affect the growth of the MRT instability at the fuel/liner interface. The MRT instability is also important in some astronomical objects such as the Crab Nebula (NGC1962). In particular, the morphological structure of the observed filaments may be determined by the ratio of the magnetic to material pressure and alignment of the magnetic field with the direction of acceleration [Hester, ApJ, 456, 225 1996]. Potential experiments to study this MRT behavior using the Z facility will be presented.
Abstract not provided.
There is a need to generate magnetic fields both above and below 1 megagauss (100 T) with compact generators for laser-plasma experiments in the Beamlet and Petawatt test chambers for focused research on fundamental properties of high energy density magnetic plasmas. Some of the important topics that could be addressed with such a capability are magnetic field diffusion, particle confinement, plasma instabilities, spectroscopic diagnostic development, material properties, flux compression, and alternate confinement schemes, all of which could directly support experiments on Z. This report summarizes a two-month study to develop preliminary designs of magnetic field generators for three design regimes. These are, (1) a design for a relatively low-field (10 to 50 T), compact generator for modest volumes (1 to 10 cm3), (2) a high-field (50 to 200 T) design for smaller volumes (10 to 100 mm3), and (3) an extreme field (greater than 600 T) design that uses flux compression. These designs rely on existing Sandia pulsed-power expertise and equipment, and address issues of magnetic field scaling with capacitor bank design and field inductance, vacuum interface, and trade-offs between inductance and coil designs.
Physics of Plasmas
Abstract not provided.
Physics of Plasmas
Abstract not provided.
Physics of Plasmas
The immersed- Bz diode is being developed as a high-brightness, flash x-ray radiography source at Sandia National Laboratories. This diode is a foil-less electron-beam diode with a long, thin, needlelike cathode that is inserted into the bore of a solenoid. The solenoidal magnetic field guides the electron beam emitted from the cathode to the anode while maintaining a small beam radius. The electron beam strikes a thin, high-atomic-number anode and produces forward-directed bremsstrahlung. In addition, electron beam heating of the anode produces surface plasmas allowing ion emission. Two different operating regimes for this diode have been identified: a nominal operating regime where the total diode current is characterized as classically bipolar and an anomalous operating regime characterized by a dramatic impedance collapse where the total diode current greatly exceeds the bipolar limit. Data from a comprehensive series of experiments fielded at 4 and 5 MV, where the diode operates in the nominal or stable impedance regime, with beam currents ranging from 20-40 kA on target are presented. In this mode, both the measured diode current and experimental radiation production are consistent with physics based models including two-dimensional particle-in-cell simulations. The analysis indicates that intermediate mass ions (e.g., 12-18 amu) control the nominal impedance evolution rather than expected lighter mass ions such as hydrogen. © 2007 American Institute of Physics.
Digest of Technical Papers-IEEE International Pulsed Power Conference
Sandia National Laboratories is investigating and developing high-dose, high-brightness flash radiographic sources. The immersed-Bz diode employs large-bore, high-field solenoid magnets to help guide and confine an intense electron beam from a needle-like cathode "immersed" in the axial field of the magnet. The electron beam is focused onto a high-atomic-number target/anode to generate an intense source of bremsstrahlung X-rays. Historically, these diodes have been unable to achieve high dose (> 500 rad @ m) from a small spot (< 3 mm diameter). It is believed that this limitation is due in part to undesirable effects associated with the interaction of the electron beam with plasmas formed at either the anode or the cathode. Previous research concentrated on characterizing the behavior of diodes, which used untreated, room temperature (RT) anodes. Research is now focused on improving the diode performance by modifying the diode behavior by using cryogenic anodes that are coated in-situ with frozen gases. The objective of these cryogenically treated anodes is to control and limit the ion species of the anode plasma formed and hence the species of the counter-streaming ions that can interact with the electron beam. Recent progress in the development, testing and fielding of the cryogenically cooled immersed diodes at Sandia is described. ©2005 IEEE.
Minimization of the radiographic spot size and maximization of the radiation dose is a continuing long-range goal for development of electron beam driven X-ray radiography sources. In collaboration with members of the Atomic Weapons Establishment(AWE), Aldermaston UK, the Advanced Radiographic Technologies Dept. 1645 is conducting research on the development of X-ray sources for flash core-punch radiography. The Hydrodynamics Dept. at AWE has defined a near term radiographic source requirement for scaled core-punch experiments to be 250 rads{at}m with a 2.75 mm source spot-size. As part of this collaborative effort, Dept. 1645 is investigating the potential of the Self-Magnetic-Pinched (SMP) diode as a source for core-punch radiography. Recent experiments conducted on the RITS-6 accelerator [1,2] demonstrated the potential of the SMP diode by meeting and exceeding the near term radiographic requirements established by AWE. During the demonstration experiments, RITS-6 was configured with a low-impedance (40 {Omega}) Magnetically Insulated Transmission Line (MITL), which provided a 75-ns, 180-kA, 7.5-MeV forward going electrical pulse to the diode. The use of a low-impedance MITL enabled greater power coupling to the SMP diode and thus allowed for increased radiation output. In addition to reconfiguring the driver (accelerator), geometric changes to the diode were also performed which allowed for an increase in dose production without sacrificing the time integrated spot characteristics. The combination of changes to both the pulsed power driver and the diode significantly increased the source x-ray intensity.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The immersed-B{sub z} diode is being developed as a high-brightness, flash x-ray radiography source. This diode is a foil-less electron-beam diode with a long, thin, needle-like cathode inserted into the bore of a solenoid. The solenoidal magnetic field guides the electron beam emitted from the cathode to the anode while maintaining a small beam radius. The electron beam strikes a thin, high-atomic-number anode and produces bremsstrahlung. We report on an extensive series of experiments where an immersed-B{sub z} diode was fielded on the RITS-3 pulsed power accelerator, a 3-cell inductive voltage generator that produced peak voltages between 4 and 5 MV, {approx}140 kA of total current, and power pulse widths of {approx}50 ns. The diode is a high impedance device that, for these parameters, nominally conducts {approx}30 kA of electron beam current. Diode operating characteristics are presented and two broadly characterized operating regimes are identified: a nominal operating regime where the total diode current is characterized as classically bipolar and an anomalous impedance collapse regime where the total diode current is in excess of the bipolar limit and up to the full accelerator current. The operating regimes are approximately separated by cathode diameters greater than {approx}3 mm for the nominal regime and less than {approx} 3 mm for the anomalous impedance collapse regime. This report represents a compilation of data taken on RITS-3. Results from key parameter variations are presented in the main body of the report and include cathode diameter, anode-cathode gap, and anode material. Results from supporting parameter variations are presented in the appendices and include magnetic field strength, prepulse, pressure and accelerator variations.
The magnetically immersed (B{sub z}) diode is being investigated as a source for pulsed-power driven flash radiography. Experiments fielding this diode have revealed a limit on its achievable current density on target. Either a small spot produces a low dose, or a high dose is achieved with a large spot. It has been proposed that this limit is due to non-protonic ions liberated from the anode surface and subsequently ionizing to higher states. The three-dimensional particle-in-cell code LSP is used to investigate this proposal. Data from the recent immersed diode experiments conducted on the RITS-3 accelerator are compared to LSP models of the experimental configuration, including the B{sub z} field map. We report on how the non-protonic and protonic ion models compare to data, and proposals for future investigation.
Spectroscopic investigations in the visible and near UV are underway to study plasmas present in X-ray radiography diodes during the time of the electron beam propagation. These studies are being performed on the RITS-3 accelerator (5.25 MV and 120 kA) at Sandia National Laboratories using several diode configurations. The proper characterization of the plasmas occurring during the time of the X-ray pulse can lead to a greater understanding of diode behavior and X-ray spot size evolution. By studying these plasmas along with the use of selective dopants, insights into such phenomena as impedance collapse, thermal and non-thermal species behavior, charge and current neutralization, anode and cathode plasma formation and propagation, and beam/foil interactions, can be obtained. Information from line and continuum emission and absorption can give key plasma parameters such as temperatures, densities, charge states, and expansion velocities. This information is important for proper modeling and future predictive capabilities for the design and improvement of flash X-ray radiography diodes. Diagnostics include a gated, intensified multichannel plate camera combined with a 1 meter Czerny-Turner monochromator with a multi-fiber spectral input, allowing for both temporal and spatial resolution. Recent results are presented.
Abstract not provided.
Conference Record of the International Power Modulator Symposium and High Voltage Workshop
Paraxial diodes have been a stronghold for high-brightness, flash x-ray radiography. In its traditional configuration, an electron beam impinges onto an anode foil, entering a gas-filled transport cell. Within the cell, the beam is focused into a small spot onto a high-Z target to generate x-rays for the radiographic utility. Simulations using Lsp, a particle-in-cell code, have shown that within the gas-filled focusing cell the electron beam spot location sweeps axially during the course of the beam pulse. The result is a larger radiographic spot than is desirable. Lsp has also shown that replacing the gas-filled cell with a fully ionized plasma on the order of 1016 cm-3 will prevent the spot from significant beam sweeping, thus resulting in a smaller, more stable radiographic spot size. Sandia National Laboratories (SNL) is developing a plasma-filled focusing cell for future paraxial diode experiments. A z-discharge in a hydrogen fill is used to generate a uniform, highly ionized plasma. Laser interferometry is the key diagnostic to determine electron density in a light lab setting and during future paraxial diode shots on SNL's RITS-3 accelerator. A time-resolved spot diagnostic will also be implemented during diode shots to measure the change in spot size during the course of the pulse. © 2004 IEEE.
Flash x-ray radiography has undergone a transformation in recent years with the resurgence of interest in compact, high intensity pulsed-power-driven electron beam sources. The radiographic requirements and the choice of a consistent x-ray source determine the accelerator parameters, which can be met by demonstrated Induction Voltage Adder technologies. This paper reviews the state of the art and the recent advances which have improved performance by over an order of magnitude in beam brightness and radiographic utility.
Abstract not provided.
Abstract not provided.
Proceedings of SPIE - The International Society for Optical Engineering
Annular wire array implosions on the Sandia Z-machine can produce >200 TW and 1-2 MJ of soft x rays in the 0.1-10 keV range. The x-ray flux and debris in this environment present significant challenges for radiographic diagnostics. X-ray backlighting diagnostics at 1865 and 6181 eV using spherically-bent crystals have been fielded on the Z-machine, each with a ~0.6 eV spectral bandpass, 10 μm spatial resolution, and a 4 mm by 20 mm field of view. The Z-Beamlet laser, a 2-TW, 2-kJ Nd:glass laser (λ=527 nm), is used to produce 0.1-1 J x-ray sources for radiography. The design, calibration, and performance of these diagnostics is presented.
Digest of Technical Papers-IEEE International Pulsed Power Conference
There has been considerable work in recent years in the development of high-brightness, high-dose flash x-ray radiographic sources. Spot size is one of several parameters that helps characterize source performance and provides a figure of merit to assess the suitability of various sources to specific experimental requirements. Time-integrated spot-size measurements using radiographic film and a high-Z rolled-edge object have been used for several years with great success. The Advanced Radiographic Technologies program thrust to improve diode performance requires extending both modeling and experimental measurements into the transient time domain. A new Time Resolved Spot Detector (TRSD) is under development to provide this information. In this paper we report the initial results of the performance of a 148-element scintillating fiber array that is fiber-optically coupled to a gated streak camera. Spatial and temporal resolution results are discussed and the data obtained from the Sandia National Laboratories (SNL) RITS-3 (Radiographic Integrated Test Stand) accelerator are presented.
Digest of Technical Papers-IEEE International Pulsed Power Conference
Plasmas are ubiquitous in the high-power electron beam diodes used for radiographic applications. In rod pinch and immersed Bz diodes they are found adjacent to the cathode and anode electrodes, and are suspected of affecting the diodes' impedance characteristics as well as the radiographic spot size. In paraxial diodes, preionized plasmas or beam-formed plasmas are also found in the gas focusing section. A common feature of the plasmas adjacent to the electrodes is that their densities can range from 10 12-1017 cm-3, and their velocity is on the order of 107 cm/s. Researchers from the Naval Research Laboratory have developed a high-sensitivity two-color interferometer that is presently being tested on Gamble II for future use on the Sandia RITS accelerator operating with a Bz diode. This diagnostic is capable of resolving a line-integrated electron density of 2×1012 cm-2, a density that might be capable of even observing the electron beam directly. This paper will present an overview of laser-based and spectroscopic diagnostics that could be used to measure plasmas found in radiographic diodes with spatial and temporal resolutions on the order of 1-5 mm and 5 ns, respectively. Plans for the use of this diagnostic on a preionized plasma cell of a paraxial diode on the Sandia RITS experiment will be discussed.
Digest of Technical Papers-IEEE International Pulsed Power Conference
Composite-rod-pinch loads on Asterix consisting of hollow aluminum tubes supporting either 1-cm-long, 1-mm-diam blunt-end or tapered gold slugs, or 1.5- to 2-mm-diam gold spheres are characterized. Composite-slug loads have slightly-lower doses than the 1.6- or 2-mm-diam standard rod pinches reported elsewhere and smaller spot sizes, leading to higher measured radiographic figures-of-merit (FOM). The FOM for the gold-sphere loads is substantially-smaller than for the slug loads.
Abstract not provided.
SNL is developing intense sources for flash x-ray radiography. The goals of the experiments presented here were to assess power flow issues and to help benchmark the LSP particle-in-cell code used to design the experiment. Comparisons between LSP simulations and experimental data are presented.
Abstract not provided.
Physics of Plasmas
Abstract not provided.
High-brightness flash x-ray sources are needed for penetrating dynamic radiography for a variety of applications. Various bremsstrahlung source experiments have been conducted on the TriMeV accelerator (3MV, 60 {Omega}, 20 ns) to determine the best diode and focusing configuration in the 2-3 MV range. Three classes of candidate diodes were examined: gas cell focusing, magnetically immersed, and rod pinch. The best result for the gas cell diode was 6 rad at 1 meter from the source with a 5 mm diameter x-ray spot. Using a 0.5 mm diameter cathode immersed in a 17 T solenoidal magnetic field, the best shot produced 4.1 rad with a 2.9 mm spot. The rod pinch diode demonstrated very reproducible radiographic spots between 0.75 and 0.8 mm in diameter, producing 1.2 rad. This represents a factor of eight improvement in the TriMeV flash radiographic capability above the original gas cell diode to a figure of merit (dose/spot diameter) > 1.8 rad/mm. These results clearly show the rod pinch diode to be the choice x-ray source for flash radiography at 2-3 M V endpoint.