Publications

Results 26–50 of 75
Skip to search filters

Control of Three Degrees-of-Freedom Wave Energy Converters Using Pseudo-Spectral Methods

Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME

Abdelkhalik, Ossama; Zou, Shangyan; Robinett, Rush; Bacelli, Giorgio B.; Wilson, David G.; Coe, Ryan

This paper presents a solution to the optimal control problem of a three degrees-of-freedom (3DOF) wave energy converter (WEC). The three modes are the heave, pitch, and surge. The dynamic model is characterized by a coupling between the pitch and surge modes, while the heave is decoupled. The heave, however, excites the pitch motion through nonlinear parametric excitation in the pitch mode. This paper uses Fourier series (FS) as basis functions to approximate the states and the control. A simplified model is first used where the parametric excitation term is neglected and a closed-form solution for the optimal control is developed. For the parametrically excited case, a sequential quadratic programming approach is implemented to solve for the optimal control numerically. Numerical results show that the harvested energy from three modes is greater than three times the harvested energy from the heave mode alone. Moreover, the harvested energy using a control that accounts for the parametric excitation is significantly higher than the energy harvested when neglecting this nonlinear parametric excitation term.

More Details

Hamiltonian methods of modeling and control of AC microgrids with spinning machines and inverters

International Journal of Electrical Power and Energy Systems

Matthews, Ronald C.; Weaver, Wayne W.; Robinett, Rush D.; Wilson, David G.

This paper presents a novel approach to the modeling and control of AC microgrids that contain spinning machines, power electronic inverters and energy storage devices. The inverters in the system can adjust their frequencies and power angles very quickly, so the modeling focuses on establishing a common reference frequency and angle in the microgrid based on the spinning machines. From this dynamic model, nonlinear Hamiltonian surface shaping and power flow control method is applied and shown to stabilize. From this approach the energy flow in the system is used to show the energy storage device requirements and limitations for the system. This paper first describes the model for a single bus AC microgrid with a Hamiltonian control, then extends this model and control to a more general class of multiple bus AC microgrids. Simulation results demonstrate the efficacy of the approach in stabilizing and optimization of the microgrid.

More Details

A comparison of control strategies for wave energy converters

International Journal of Marine Energy

Coe, Ryan G.; Bacelli, Giorgio B.; Wilson, David G.; Abdelkhalik, Ossama; Korde, Umesh A.; Robinett, Rush D.

In this study, we employ a numerical model to compare the performance of a number of wave energy converter control strategies. The controllers selected for evaluation span a wide range in their requirements for implementation. Each control strategy is evaluated using a single numerical model with a set of sea states to represent a deployment site off the coast of Newport, OR. A number of metrics, ranging from power absorption to kinematics, are employed to provide a comparison of each control strategy's performance that accounts for both relative benefits and costs. The results show a wide range of performances from the different controllers and highlight the need for a holistic design approach which considers control design as a parallel component within the larger process WEC design.

More Details

Smart Grid R&D SSM KIER FY17 Report

Wilson, David G.; Cook, Marvin A.

This report summarizes collaborative efforts between Secure Scalable Microgrid and Korean Institute of Energy Research team members . The efforts aim to advance microgrid research and development towards the efficient utilization of networked microgrids . The collaboration resulted in the identification of experimental and real time simulation capabilities that may be leveraged for networked microgrids research, development, and demonstration . Additional research was performed to support the demonstration of control techniques within real time simulation and with hardware in the loop for DC microgrids .

More Details

A predictive engine for on-line optimal microgrid control

2017 IEEE Electric Ship Technologies Symposium, ESTS 2017

Young, Joseph; Cook, Marvin A.; Wilson, David G.

This research presents a predictive engine that integrates into an on-line optimal control planner for electrical microgrids. This controller models the behavior of the underlying system over a specified time horizon and then solves for a control over this period. In an electrical microgrid, such predictions are challenging to obtain in the presence of errors in the sensor information. The likelihood of instrumentation errors increases as microgrids become more complex and cyber threats more common. In order to overcome these difficulties, details are provided about a predictive engine robust to errors.

More Details

Multiresonant Feedback Control of a Three-Degree-of-Freedom Wave Energy Converter

IEEE Transactions on Sustainable Energy

Abdelkhalik, Ossama; Zou, Shangyan; Robinett, Rush D.; Bacelli, Giorgio B.; Wilson, David G.; Coe, Ryan; Korde, Umesh

For a three-degree-of-freedom wave energy converter (heave, pitch, and surge), the equations of motion could be coupled depending on the buoy shape. This paper presents a multiresonant feedback control, in a general framework, for this type of a wave energy converter that is modeled by linear time invariant dynamic systems. The proposed control strategy finds the optimal control in the sense that it computes the control based on the complex conjugate criteria. This control strategy is relatively easy to implement since it is a feedback control in the time domain that requires only measurements of the buoy motion. Numerical tests are presented for two different buoy shapes: a sphere and a cylinder. Regular, Bretschnieder, and Ochi-Hubble waves are tested. Simulation results show that the proposed controller harvests energy in the pitch-surge-heave modes that is about three times the energy that can be harvested using a heave-only device. This multiresonant control can also be used to shift the energy harvesting between the coupled modes, which can be exploited to eliminate one of the actuators while maintaining about the same level of energy harvesting.

More Details

Model Predictive Control of parametric excited pitch-surge modes in wave energy converters

International Journal of Marine Energy

Zou, Shangyan; Abdelkhalik, Ossama; Robinett, Rush; Korde, Umesh; Bacelli, Giorgio B.; Wilson, David G.; Coe, Ryan

For a heave-pitch-surge three-degrees-of-freedom wave energy converter, the heave mode is usually decoupled from the pitch-surge modes for small motions. The pitch-surge modes are usually coupled and are parametrically excited by the heave mode, depending on the buoy geometry. In this paper, a Model Predictive Control is applied to the parametric excited pitch-surge motion, while the heave motion is optimized independently. The optimality conditions are derived, and a gradient-based numerical optimization algorithm is used to search for the optimal control. Numerical tests are conducted for regular and Bretschneider waves. The results demonstrate that the proposed control can be implemented to harvest more than three times the energy that can be harvested using a heave-only wave energy converter. The energy harvested using a parametrically excited model is higher than that is harvested when using a linear model.

More Details
Results 26–50 of 75
Results 26–50 of 75