Publications

Results 1–25 of 75
Skip to search filters

The Optimal Control of an Electric Warship Driven by an Operational Vignette

2021 IEEE Electric Ship Technologies Symposium, ESTS 2021

Young, Joseph; Wilson, David G.; Cook, Marvin A.

The following paper presents a framework for the optimal control of an electric warship using a load profile derived from an operational vignette. This framework consists of three key components: a reduced order model of an electric ship, a discretization of the resulting constitutive equations using an orthogonal spline collocation method, and an optimization engine to solve the resulting formulation. Once assembled, this control framework is validated through its application to a four zone model of a medium voltage DC (MVDC) electric ship using a load profile from an operational vignette,

More Details

Reduced Order Model of a Four Zone Medium Voltage DC Electric Ship

2021 IEEE Electric Ship Technologies Symposium, ESTS 2021

Weaver, Wayne W.; Robinett, Rush D.; Wilson, David G.; Glover, Steven F.

The models of multi-zone electric ship is important to the development of ship operational capability and performance. However, there is not one best model type that can fit all the needs of the engineering process. High-fidelity models are needed to act as a digital twin to the system hardware for testing and validation purposes. However, a highly detailed digital model of a MVDC does not enable insight and development of analytical control and optimization algorithms. This paper presents a reduced order model (ROM) of a notional four-zone medium voltage ship. This ROM can be written in a closed-form analytical expression that is appropriate for analysis and high-level supervisory control synthesis.

More Details

Modeling and predicting power from a WEC array

Oceans Conference Record (IEEE)

Coe, Ryan G.; Bacelli, Giorgio B.; Gaebele, Daniel; Cotten, Alfred; McNatt, Cameron; Wilson, David G.; Weaver, Wayne; Kasper, Jeremy L.; Khalil, Mohammad K.; Dallman, Ann R.

This study presents a numerical model of a WEC array. The model will be used in subsequent work to study the ability of data assimilation to support power prediction from WEC arrays and WEC array design. In this study, we focus on design, modeling, and control of the WEC array. A case study is performed for a small remote Alaskan town. Using an efficient method for modeling the linear interactions within a homogeneous array, we produce a model and predictionless feedback controllers for the devices within the array. The model is applied to study the effects of spectral wave forecast errors on power output. The results of this analysis show that the power performance of the WEC array will be most strongly affected by errors in prediction of the spectral period, but that reductions in performance can realistically be limited to less than 10% based on typical data assimilation based spectral forecasting accuracy levels.

More Details

Energy storage design considerations for an MVDC power system

Journal of Marine Engineering and Technology

Rashkin, Lee; Neely, Jason C.; Wilson, David G.; Glover, Steven F.; Doerry, Norbert; Markle, Stephen; McCoy, Timothy J.

The U.S. Navy is investing in the development of new technologies that broaden warship capabilities and maintain U.S. naval superiority. Specifically, Naval Sea Systems Command (NAVSEA) is supporting the development of power systems technologies that enable the Navy to realise an all-electric warship. A challenge to fielding an all-electric power system architecture includes minimising the size of energy storage systems (ESS) while maintaining the response times necessary to support potential pulsed loads. This work explores the trade-off between energy storage size requirements (i.e. mass) and performance (i.e. peak power, energy storage, and control bandwidth) in the context of a power system architecture that meets the needs of the U.S. Navy. In this work, the simulated time domain responses of a representative power system were evaluated under different loading conditions and control parameters, and the results were considered in conjunction with sizing constraints of and estimated specific power and energy densities of various storage technologies. The simulation scenarios were based on representative operational vignettes, and a Ragone plot was used to illustrate the intersection of potential energy storage sizing with the energy and power density requirements of the system. Furthermore, the energy storage control bandwidth requirements were evaluated by simulation for different loading scenarios. Two approaches were taken to design an ESS: one based only on time domain power and energy requirements from simulation and another based on bandwidth (specific frequency) limitations of various technologies.

More Details

Feedback Resonating Control for a Wave Energy Converter

IEEE Transactions on Industry Applications

Bacelli, Giorgio B.; Nevarez, Victor N.; Coe, Ryan G.; Wilson, David G.

Through the use of advanced control techniques, wave energy converters (WECs) can achieve substantial increases in energy absorption. The motion of the WEC device is a significant contribution to the energy absorbed by the device. Reactive (complex conjugate) control maximizes the energy absorption due to the impedance matching. The issue with complex conjugate control is that, in general, the controller is noncausal, which requires prediction of the incoming waves. This article explores the potential of employing system identification techniques to build a causal transfer function that approximates the complex conjugate controller over a finite frequency band of interest. This approach is quite viable given the band-limited nature of ocean waves. The resulting controller is stable, and the average efficiency of the power captured by the causal controller in realistic ocean waves is 99%, when compared to the noncausal complex conjugate.

More Details

Nonlinear WEC optimized geometric buoy design for efficient reactive power requirements

OCEANS 2019 MTS/IEEE Seattle, OCEANS 2019

Wilson, David G.; Robinett, Rush D.; Bacelli, Giorgio B.; Abdelkhalik, Ossama; Weaver, Wayne W.; Coe, Ryan

This paper presents a nonlinear geometric buoy design for Wave Energy Converters (WECs). A nonlinear dynamic model is presented for an hour glass (HG) configured WEC. The HG buoy operates in heave motion or as a single Degree-of-Freedom (DOF). The unique formulation of the interaction between the buoy and the waves produces a nonlinear stiffening effect that provides the actual energy storage or reactive power during operation. A Complex Conjugate Control (C3) with a practical Proportional-Derivative (PD) controller is employed to optimize power absorption for off-resonance conditions and applied to a linear right circular cylinder (RCC) WEC. For a single frequency the PDC3 RCC buoy is compared with the HG buoy design. A Bretschneider spectrum of wave excitation input conditions are reviewed and evaluated for the HG buoy. Numerical simulations demonstrate power and energy capture for the HG geometric buoy design which incorporates and capitalizes on the nonlinear geometry to provide reactive power for the single DOF WEC. By exploiting the nonlinear physics in the HG design simplified operational performance is observed when compared to an optimized linear cylindrical WEC. The HG steepness angle α with respect to the wave is varied and initially optimized for improved energy capture.

More Details

WEC array networked microgrid control design and energy storage system requirements

OCEANS 2019 MTS/IEEE Seattle, OCEANS 2019

Weaver, Wayne W.; Hagmuller, Alex; Ginsburg, Max; Wilson, David G.; Bacelli, Giorgio B.; Robinett, Rush D.; Coe, Ryan; Gunawan, Budi G.

Wave Energy Converter (WEC) technologies transform power from the waves to the electrical grid. WEC system components are investigated that support the performance, stability, and efficiency as part of a WEC array. To this end, Aquaharmonics Inc took home the 1.5 million grand prize in the 2016 U.S. Department of Energy Wave Energy Prize, an 18-month design-build-test competition to increase the energy capture potential of wave energy devices. Aquaharmonics intends to develop, build, and perform open ocean testing on a 1: 7 scale device. Preliminary wave tank testing on the mechanical system of the 1: 20 scale device has yielded a data-set of operational conditions and performance. In this paper, the Hamiltonian surface shaping and power flow control (HSSPFC) method is used in conjunction with scaled wave tank test data to explore the design space for the electrical transmission of energy to the shore-side power grid. Of primary interest is the energy storage system (ESS) that will electrically link the WEC to the shore. Initial analysis results contained in this paper provide a trade-off in storage device performance and design selection.

More Details

Exergy surface shaping and thermodynamic flow control of electro-mechanical-thermal systems

International Journal of Energy

Wilson, David G.; Weaver, Wayne W.; Robinett, Rush D.

Our work extends the concepts and tools of Hamiltonian Surface Shaping and Power Flow Control (HS SPFC) for electro-mechanical (EM) systems(i.e., adiabatic irreversible work processes and Hamiltonian natural systems)to Exergy Surface Shaping and Thermodynamic Flow Control (ESSTFC) for electro-mechanical-thermal (EMT) systems (i.e., irreversible work processes with heat and mass flows). The extension of HSSPFC requires the development of exergy potential functions, irreversible entropy production terms of the entropy balance equation to obtain the exergy destruction terms for inclusion in the exergy balance equation, and variational principles for producing consistent equations of motion for coupled EMT systems. The Hamiltonian for natural EM systems is an exergy potential function which leaves the development of exergy potential functions for the thermal part of the coupled models. This development is completed by integrating the exergy function over the control volume subject to the modeling assumptions. The irreversible entropy production terms are the exergy destruction terms of the exergy balance equation and the generalization of the mechanical dissipation and electrical resistance within EM systems. These generalized dissipation terms enable the derivation of a consistent set of coupled equations of motion for EMT systems. For this paper, Extended Irreversible Thermodynamics will be utilized to produce consistent thermal equations of motion that directly include the exergy destruction terms. There are several variational principles that are available for application to EMT systems. We focus on the variational principles developed by Biot and Fung [1, 2]. Furthermore, a simplified EMT system that models the EMT dynamics of a Navy ship equipped with a railgun is used to demonstrate the application of ESSTFC for designing high performance, stable nonlinear controllers for EMT systems.

More Details

A Hamiltonian Surface-Shaping approach for control system analysis and the design of nonlinear Wave Energy Converters

Journal of Marine Science and Engineering

Darani, Shadi; Abdelkhalik, Ossama; Robinett, Rush D.; Wilson, David G.

The dynamic model ofWave Energy Converters (WECs) may have nonlinearities due to several reasons such as a nonuniform buoy shape and/or nonlinear power takeoff units. This paper presents the Hamiltonian Surface-Shaping (HSS) approach as a tool for the analysis and design of nonlinear control of WECs. The Hamiltonian represents the stored energy in the system and can be constructed as a function of the WEC's system states, its position, and velocity. The Hamiltonian surface is defined by the energy storage, while the system trajectories are constrained to this surface and determined by the power flows of the applied non-conservative forces. The HSS approach presented in this paper can be used as a tool for the design of nonlinear control systems that are guaranteed to be stable. The optimality of the obtained solutions is not addressed in this paper. The case studies presented here cover regular and irregular waves and demonstrate that a nonlinear control system can result in a multiple fold increase in the harvested energy.

More Details

Feedback Resonating Control for a Wave Energy Converter

SPEEDAM 2018 - Proceedings: International Symposium on Power Electronics, Electrical Drives, Automation and Motion

Nevarez, Victor N.; Bacelli, Giorgio B.; Coe, Ryan G.; Wilson, David G.

Through the use of advanced control techniques, wave energy converters have significantly improved energy absorption. The motion of the WEC device is a significant contribution to the energy absorbed by the device. Reactive control (complex conjugate control) maximizes the energy absorption due to the impedance matching. The issue with complex conjugate control is that the controller is non-causal, which requires prediction into the oncoming waves to the device. This paper explores the potential of using system identification (SID) techniques to build a causal transfer function that approximates the complex conjugate controller over a specific frequency band of interest. The resulting controller is stable, and the average efficiency of the power captured by the causal controller is 99%, when compared to the non-causal complex conjugate.

More Details

WEC Array Electro-Mechanical Drivetrain Networked Microgrid Control Design and Energy Storage System Analysis

SPEEDAM 2018 - Proceedings: International Symposium on Power Electronics, Electrical Drives, Automation and Motion

Wilson, David G.; Weaver, Wayne W.; Bacelli, Giorgio B.; Robinett, Rush D.

The purpose of this paper is to investigate Wave Energy Converter (WEC) technologies that are required to transform power from the waves to the electrical grid. WEC system components are reviewed that reveal the performance, stability, and efficiency. These WEC system individual components consists of; control methods, electro-mechanical drive-train, generator machines, power electronic converters, energy storage systems, and electrical grid integration. Initially, the transformation of energy from the wave to the electric grid is explored in detail for an individual WEC system. A control design methodology is then presented that addresses high penetration of Renewable Energy Sources (RES) and loads for networked AC/DC microgrid islanded subsystems. Both static and dynamic stability conditions are identified for the networked AC/DC microgrid system. Detailed numerical simulations were conducted for the electro-mechanical drivetrain system which includes; the dynamic responses, power generation for multiple wave conditions, and total efficiency of the energy/power conversion process. As a renewable energy scenario, the AC/DC microgrid islanded subsystem is employed to integrate an array of WECs. Preliminary Energy Storage System (ESS) power requirements are determined for the renewable energy scenario.

More Details

Nonlinear Power Flow Control Design for Networked AC/ DC Based Microgrid Systems

Proceedings of the American Control Conference

Wilson, David G.; Weaver, Wayne W.; Robinett, Rush D.; Glover, Steven F.

This paper presents a control design methodology that addresses high penetration of variable generation or renewable energy sources and loads for networked AC /DC microgrid systems as an islanded subsystem or as part of larger electric power grid systems. High performance microgrid systems that contain large amounts of stochastic sources and loads is a major goal for the future of electric power systems. Alternatively, methods for controlling and analyzing AC/ DC microgrid systems will provide an understanding into the tradeoffs that can be made during the design phase. This method develops both a control design methodology and realizable hierarchical controllers that are based on the Hamiltonian Surface Shaping and Power Flow Control (HSSPFC) methodology that regulates renewable energy sources, varying loads and identifies energy storage requirements for a networked AC/DC microgrid system. Both static and dynamic stability conditions are derived. A renewable energy scenario is considered for a networked three DC microgrids tied into an AC ringbus configuration. Numerical simulation results are presented.

More Details
Results 1–25 of 75
Results 1–25 of 75